Find the number of distinct islands in a 2D matrix
Given a boolean 2D matrix. The task is to find the number of distinct islands where a group of connected 1s (horizontally or vertically) forms an island. Two islands are considered to be distinct if and only if one island is equal to another (not rotated or reflected).
Examples:
Input: grid[][] = {{1, 1, 0, 0, 0}, 1, 1, 0, 0, 0}, 0, 0, 0, 1, 1}, 0, 0, 0, 1, 1}} Output: 1 Island 1, 1 at the top left corner is same as island 1, 1 at the bottom right corner Input: grid[][] = {{1, 1, 0, 1, 1}, 1, 0, 0, 0, 0}, 0, 0, 0, 0, 1}, 1, 1, 0, 1, 1}} Output: 3
Distinct islands in the example above are 1, 1 at the top left corner; 1, 1 at the top right corner and 1 at the bottom right corner. We ignore the island 1, 1 at the bottom left corner since 1, 1 it is identical to the top right corner.
Approach: This problem is an extension of the problem Number of Islands.
The core of the question is to know if 2 islands are equal. The primary criteria is that the number of 1’s should be same in both. But this cannot be the only criteria as we have seen in example 2 above. So how do we know? We could use the position/coordinates of the 1’s.
If we take the first coordinates of any island as a base point and then compute the coordinates of other points from the base point, we can eliminate duplicates to get the distinct count of islands. So, using this approach, the coordinates for the 2 islands in example 1 above can be represented as: [(0, 0), (0, 1), (1, 0), (1, 1)].
Below is the implementation of the above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; // 2D array for the storing the horizontal and vertical // directions. (Up, left, down, right} vector<vector< int > > dirs = { { 0, -1 }, { -1, 0 }, { 0, 1 }, { 1, 0 } }; // Function to perform dfs of the input grid void dfs(vector<vector< int > >& grid, int x0, int y0, int i, int j, vector<pair< int , int > >& v) { int rows = grid.size(), cols = grid[0].size(); if (i < 0 || i >= rows || j < 0 || j >= cols || grid[i][j] <= 0) return ; // marking the visited element as -1 grid[i][j] *= -1; // computing coordinates with x0, y0 as base v.push_back({ i - x0, j - y0 }); // repeat dfs for neighbors for ( auto dir : dirs) { dfs(grid, x0, y0, i + dir[0], j + dir[1], v); } } // Main function that returns distinct count of islands in // a given boolean 2D matrix int countDistinctIslands(vector<vector< int > >& grid) { int rows = grid.size(); if (rows == 0) return 0; int cols = grid[0].size(); if (cols == 0) return 0; set<vector<pair< int , int > > > coordinates; for ( int i = 0; i < rows; ++i) { for ( int j = 0; j < cols; ++j) { // If a cell is not 1 // no need to dfs if (grid[i][j] != 1) continue ; // vector to hold coordinates // of this island vector<pair< int , int > > v; dfs(grid, i, j, i, j, v); // insert the coordinates for // this island to set coordinates.insert(v); } } return coordinates.size(); } // Driver code int main() { vector<vector< int > > grid = { { 1, 1, 0, 1, 1 }, { 1, 0, 0, 0, 0 }, { 0, 0, 0, 0, 1 }, { 1, 1, 0, 1, 1 } }; cout << "Number of distinct islands is " << countDistinctIslands(grid); return 0; } |
Java
// Java code for the above approach import java.io.*; import java.util.*; class GFG { // Driver Code public static void main(String[] args) { // Given Inputs int [][] grid = { { 1 , 1 , 0 , 1 , 1 }, { 1 , 0 , 0 , 0 , 0 }, { 0 , 0 , 0 , 0 , 1 }, { 1 , 1 , 0 , 1 , 1 } }; // Function Call System.out.println( "Number of distinct islands is " + countDistinctIslands(grid)); } // 2D array for the storing the horizontal and vertical directions. (Up, left, down, right} static int [][] dirs = { { 0 , - 1 }, { - 1 , 0 }, { 0 , 1 }, { 1 , 0 } }; private static String toString( int r, int c) { return Integer.toString(r) + " " + Integer.toString(c); } // Function to perform dfs of the input grid private static void dfs( int [][] grid, int x0, int y0, int i, int j, ArrayList<String>v) { int rows = grid.length, cols = grid[ 0 ].length; if (i < 0 || i >= rows || j < 0 || j >= cols || grid[i][j] <= 0 ) return ; // marking the visited element as -1 grid[i][j] *= - 1 ; // computing coordinates with x0, y0 as base v.add(toString(i - x0, j - y0)); // repeat dfs for neighbors for ( int k = 0 ; k < 4 ; k++) { dfs(grid, x0, y0, i + dirs[k][ 0 ], j + dirs[k][ 1 ], v); } } // Main function that returns distinct count of islands in a given boolean 2D matrix public static int countDistinctIslands( int [][] grid) { int rows = grid.length; if (rows == 0 ) return 0 ; int cols = grid[ 0 ].length; if (cols == 0 ) return 0 ; HashSet<ArrayList<String>> coordinates = new HashSet<> (); for ( int i = 0 ; i < rows; ++i) { for ( int j = 0 ; j < cols; ++j) { // If a cell is not 1 no need to dfs if (grid[i][j] != 1 ) continue ; // vector to hold coordinates of this island ArrayList<String> v = new ArrayList<>(); dfs(grid, i, j, i, j, v); // insert the coordinates for // this island to set coordinates.add(v); } } return coordinates.size(); } } // This code is contributed by ajaymakvana. |
Python3
# Python implementation of above approach # 2D array for the storing the horizontal and vertical # directions. (Up, left, down, right dirs = [ [ 0 , - 1 ], [ - 1 , 0 ], [ 0 , 1 ], [ 1 , 0 ] ] # Function to perform dfs of the input grid def dfs(grid, x0, y0, i, j, v): rows = len (grid) cols = len (grid[ 0 ]) if i < 0 or i > = rows or j < 0 or j > = cols or grid[i][j] < = 0 : return # marking the visited element as -1 grid[i][j] * = - 1 # computing coordinates with x0, y0 as base v.append( (i - x0, j - y0) ) # repeat dfs for neighbors for dir in dirs: dfs(grid, x0, y0, i + dir [ 0 ], j + dir [ 1 ], v) # Main function that returns distinct count of islands in # a given boolean 2D matrix def countDistinctIslands(grid): rows = len (grid) if rows = = 0 : return 0 cols = len (grid[ 0 ]) if cols = = 0 : return 0 coordinates = set () for i in range (rows): for j in range (cols): # If a cell is not 1 # no need to dfs if grid[i][j] ! = 1 : continue # to hold coordinates # of this island v = [] dfs(grid, i, j, i, j, v) # insert the coordinates for # this island to set coordinates.add( tuple (v)) return len (coordinates) # Driver code grid = [[ 1 , 1 , 0 , 1 , 1 ], [ 1 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 1 ], [ 1 , 1 , 0 , 1 , 1 ] ] print ( "Number of distinct islands is" , countDistinctIslands(grid)) # This code is contributed by ankush_953 |
Number of distinct islands is 3
Time complexity: O(rows * cols * log(rows * cols))
Where rows is the number of rows and cols is the number of columns in the matrix, here we visit every cell so O(row * col) for that and for every cell we need to add atmost (row * col) pairs in set which will cost us O(log(rows*cols)) so overall time complexity will be O(rows * cols * log(rows * cols))
Auxiliary Space: O(rows * cols)
In set we need to ad atmost rows*cols entry so space complexity will be O(rows * cols)
Please Login to comment...