Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Find the count of unvisited indices in an infinite array

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array of infinite length and two integers M and N which are co-primes, the task is to find the number of positions that cannot be visited starting from the first position when in a single move from arr[i], either arr[i + M] or arr[i + N] can be reached. Note that the result is always finite.
Examples
 

Input: M = 2, N = 5 
Output:
From index 0, the indices that can be visited are 
0 + 2 = 2 
0 + 2 + 2 = 4 
0 + 5 = 5 
0 + 2 + 2 + 2 = 6 
0 + 2 + 5 = 7 
0 + 2 + 2 + 2 + 2 = 8 
0 + 2 + 2 + 5 = 9 
0 + 5 + 5 = 10 
… 
1 and 3 are the only indices that cannot be visited.
Input: M = 5, N = 6 
Output: 15 
 

 

Recommended Practice

Approach: 
 

  • Find the largest index that can’t be obtained using any combination of M & N using Frobenius number say X = (M * N) – M – N .
  • Since, X is the largest index than cannot be visited so every index greater than it doesn’t need to be checked.
  • Now, for the indices smaller than X, if X is unvisited then Y = X – M and Z = X – N are also unreachable and same goes Y – M and Z – N and so on.. until the indices are greater than 0.

Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of unvisited indices starting
// from the index 0
int countUnvisited(int n, int m)
{
     
    // Largest index that
    // cannot be visited
    int X = (m * n) - m - n;
 
    // Push the index to the queue
    queue<int> queue;
 
    queue.push(X);
 
    // To store the required count
    int count = 0;
    while (queue.size() > 0)
    {
 
        // Current index that cannot be visited
        int curr = queue.front();
        queue.pop();
 
        // Increment the count for
        // the current index
        count++;
 
        // (curr - m) and (curr - n) are also
        // unreachable if they are valid indices
        if (curr - m > 0)
            queue.push(curr - m);
        if (curr - n > 0)
            queue.push(curr - n);
    }
 
    // Return the required count
    return count;
}
 
// Driver code
int main()
{
    int n = 2, m = 5;
 
    cout << countUnvisited(n, m);
 
    return 0;
}
 
// This code is contributed by Sanjit_Prasad

Java




// Java implementation of the approach
import java.util.LinkedList;
import java.util.Queue;
 
class GFG {
 
    // Function to return the count
    // of unvisited indices starting
    // from the index 0
    public static int countUnvisited(int n, int m)
    {
 
        // Largest index that
        // cannot be visited
        int X = (m * n) - m - n;
 
        // Push the index to the queue
        Queue<Integer> queue = new LinkedList<>();
        queue.add(X);
 
        // To store the required count
        int count = 0;
        while (!queue.isEmpty()) {
 
            // Current index that cannot be visited
            int curr = queue.poll();
 
            // Increment the count for
            // the current index
            count++;
 
            // (curr - m) and (curr - n) are also
            // unreachable if they are valid indices
            if (curr - m > 0)
                queue.add(curr - m);
            if (curr - n > 0)
                queue.add(curr - n);
        }
 
        // Return the required count
        return count;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int n = 2, m = 5;
        System.out.print(countUnvisited(n, m));
    }
}

Python 3




# Python 3 implementation of the approach
 
# Function to return the count
# of unvisited indices starting
# from the index 0
def countUnvisited(n, m):
     
    # Largest index that
    # cannot be visited
    i = 0
    X = (m * n) - m - n
 
    # Push the index to the queue
    queue = []
 
    queue.append(X)
 
    # To store the required count
    count = 0
    while (len(queue) > 0):
         
        # Current index that cannot be visited
        curr = queue[0]
        queue.remove(queue[0])
 
        # Increment the count for
        # the current index
        count += 1
 
        # (curr - m) and (curr - n) are also
        # unreachable if they are valid indices
        if (curr - m > 0):
            queue.append(curr - m)
        if (curr - n > 0):
            queue.append(curr - n)
 
    # Return the required count
    return count
 
# Driver code
if __name__ == '__main__':
    n = 2
    m = 5
 
    print(countUnvisited(n, m))
     
# This code is contributed by Surendra_Gangwar

C#




// C# implementation of the above approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
    // Function to return the count
    // of unvisited indices starting
    // from the index 0
    public static int countUnvisited(int n, int m)
    {
 
        // Largest index that
        // cannot be visited
        int X = (m * n) - m - n;
 
        // Push the index to the queue
        Queue<int> queue = new Queue<int>();
        queue.Enqueue(X);
 
        // To store the required count
        int count = 0;
        while (queue.Count != 0)
        {
 
            // Current index that cannot be visited
            int curr = queue.Dequeue();
 
            // Increment the count for
            // the current index
            count++;
 
            // (curr - m) and (curr - n) are also
            // unreachable if they are valid indices
            if (curr - m > 0)
                queue.Enqueue(curr - m);
            if (curr - n > 0)
                queue.Enqueue(curr - n);
        }
 
        // Return the required count
        return count;
    }
 
    // Driver code
    public static void Main(String []args)
    {
        int n = 2, m = 5;
        Console.WriteLine(countUnvisited(n, m));
    }
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the count
// of unvisited indices starting
// from the index 0
function countUnvisited(n, m)
{
     
    // Largest index that
    // cannot be visited
    let X = (m * n) - m - n;
 
    // Push the index to the queue
    let queue = [];
 
    queue.push(X);
 
    // To store the required count
    let count = 0;
    while (queue.length > 0)
    {
 
        // Current index that cannot be visited
        let curr = queue[0];
        queue.pop();
 
        // Increment the count for
        // the current index
        count++;
 
        // (curr - m) and (curr - n) are also
        // unreachable if they are valid indices
        if (curr - m > 0)
            queue.push(curr - m);
        if (curr - n > 0)
            queue.push(curr - n);
    }
 
    // Return the required count
    return count;
}
 
// Driver code
let n = 2, m = 5;
document.write(countUnvisited(n, m));
 
// This code is contributed by shinjanpatra
 
 
</script>

Output: 

2

 

Time Complexity: O(n * m)

Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Last Updated : 30 Jun, 2022
Like Article
Save Article
Similar Reads
Related Tutorials