Find row with maximum and minimum number of zeroes in given Matrix
Given a 2D matrix containing only zeroes and ones, where each row is sorted. The task is to find the row with the maximum number of 0s and the row with minimum number of 0s.
Example:
Input: mat[][] = {
{0, 1, 1, 1},
{0, 0, 1, 1},
{1, 1, 1, 1},
{0, 0, 0, 0}}
Output:
Row with min zeroes: 3
Row with max zeroes: 4
Input: mat[][] = {
{0, 1, 1, 1},
{0, 0, 1, 1},
{0, 0, 0, 1},
{0, 0, 0, 0}}
Output:
Row with min zeroes: 1
Row with max zeroes: 4
Simple approach: A simple method is to do a row wise traversal of the matrix, count the number of 0s in each row and compare the count with max and min. Finally, return the index of row with maximum 0s and minimum 0s. The time complexity of this method is O(M*N) where M is number of rows and N is number of columns in matrix.
Efficient approach: Since each row is sorted, we can use Binary Search to find the count of 0s in each row. The idea is to find the index of first instance of 1 in each row.
The count of 0s in that row will be:
- If 1 exists in the row, then count of 0s will be equal to the index of first 1 in the row considering zero-based indexing.
- If 1 does not exist in the row, then count of 0s will be N which is the total number of columns in the matrix.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define R 4 #define C 4 // Function to find the index of first 1 // in the binary array arr[] int first( bool arr[], int low, int high) { if (high >= low) { // Get the middle index int mid = low + (high - low) / 2; // Check if the element at middle index is first 1 if ((mid == 0 || arr[mid - 1] == 0) && arr[mid] == 1) return mid; // If the element is 0, recur for right side else if (arr[mid] == 0) return first(arr, (mid + 1), high); // If element is not first 1, recur for left side else return first(arr, low, (mid - 1)); } return -1; } // Function to print rows with maximum // and minimum number of zeroes void rowWith0s( bool mat[R][C]) { // Initialize max values int max_row_index = 0, max = INT_MIN; // Initialize min values int min_row_index = 0, min = INT_MAX; // Traverse for each row and count number of 0s // by finding the index of first 1 int i, index; for (i = 0; i < R; i++) { index = first(mat[i], 0, C - 1); int cntZeroes = 0; // If index = -1, that is there is no 1 // in the row, count of zeroes will be C if (index == -1) { cntZeroes = C; } // Else, count of zeroes will be index // of first 1 else { cntZeroes = index; } // Find max row index if (max < cntZeroes) { max = cntZeroes; max_row_index = i; } // Find min row index if (min > cntZeroes) { min = cntZeroes; min_row_index = i; } } cout << "Row with min 0s: " << min_row_index + 1; cout << "\nRow with max 0s: " << max_row_index + 1; } // Driver code int main() { bool mat[R][C] = { { 0, 0, 0, 1 }, { 0, 1, 1, 1 }, { 1, 1, 1, 1 }, { 0, 0, 0, 0 } }; rowWith0s(mat); return 0; } |
Java
// Java implementation of the approach import java.io.*; class GFG { static int R = 4 ; static int C = 4 ; // Function to find the index of first 1 // in the binary array arr[] static int first( int arr[], int low, int high) { if (high >= low) { // Get the middle index int mid = low + (high - low) / 2 ; // Check if the element at middle index is first 1 if ((mid == 0 || arr[mid - 1 ] == 0 ) && arr[mid] == 1 ) return mid; // If the element is 0, recur for right side else if (arr[mid] == 0 ) return first(arr, (mid + 1 ), high); // If element is not first 1, recur for left side else return first(arr, low, (mid - 1 )); } return - 1 ; } // Function to print rows with maximum // and minimum number of zeroes static void rowWith0s( int mat[][]) { // Initialize max values int max_row_index = 0 , max = Integer.MIN_VALUE; // Initialize min values int min_row_index = 0 , min = Integer.MAX_VALUE; // Traverse for each row and count number of 0s // by finding the index of first 1 int i, index; for (i = 0 ; i < R; i++) { index = first(mat[i], 0 , C - 1 ); int cntZeroes = 0 ; // If index = -1, that is there is no 1 // in the row, count of zeroes will be C if (index == - 1 ) { cntZeroes = C; } // Else, count of zeroes will be index // of first 1 else { cntZeroes = index; } // Find max row index if (max < cntZeroes) { max = cntZeroes; max_row_index = i; } // Find min row index if (min > cntZeroes) { min = cntZeroes; min_row_index = i; } } System.out.println ( "Row with min 0s: " + (min_row_index + 1 )); System.out.println ( "Row with max 0s: " + (max_row_index + 1 )); } // Driver code public static void main (String[] args) { int mat[][] = { { 0 , 0 , 0 , 1 }, { 0 , 1 , 1 , 1 }, { 1 , 1 , 1 , 1 }, { 0 , 0 , 0 , 0 } }; rowWith0s(mat); } } // This code is contributed by ajit. |
Python3
# Python3 implementation of the approach import sys R = 4 C = 4 # Function to find the index of first 1 # in the binary array arr[] def first(arr, low, high) : if (high > = low) : # Get the middle index mid = low + (high - low) / / 2 ; # Check if the element at middle index is first 1 if ((mid = = 0 or arr[mid - 1 ] = = 0 ) and arr[mid] = = 1 ) : return mid; # If the element is 0, recur for right side elif (arr[mid] = = 0 ) : return first(arr, (mid + 1 ), high); # If element is not first 1, recur for left side else : return first(arr, low, (mid - 1 )); return - 1 ; # Function to print rows with maximum # and minimum number of zeroes def rowWith0s(mat) : # Initialize max values row_index = 0 ; max = - (sys.maxsize - 1 ); # Initialize min values min_row_index = 0 ; min = sys.maxsize; # Traverse for each row and count number of 0s # by finding the index of first 1 for i in range (R) : index = first(mat[i], 0 , C - 1 ); cntZeroes = 0 ; # If index = -1, that is there is no 1 # in the row, count of zeroes will be C if (index = = - 1 ) : cntZeroes = C; # Else, count of zeroes will be index # of first 1 else : cntZeroes = index; # Find max row index if ( max < cntZeroes) : max = cntZeroes; max_row_index = i; # Find min row index if ( min > cntZeroes) : min = cntZeroes; min_row_index = i; print ( "Row with min 0s:" ,min_row_index + 1 ); print ( "Row with max 0s:" , max_row_index + 1 ); # Driver code if __name__ = = "__main__" : mat = [ [ 0 , 0 , 0 , 1 ], [ 0 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 1 ], [ 0 , 0 , 0 , 0 ] ]; rowWith0s(mat); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; class GFG { static int R = 4; static int C = 4; // Function to find the index of first 1 // in the binary array arr[] static int first( int []arr, int low, int high) { if (high >= low) { // Get the middle index int mid = low + (high - low) / 2; // Check if the element at middle index is first 1 if ((mid == 0 || arr[mid - 1] == 0) && arr[mid] == 1) return mid; // If the element is 0, recur for right side else if (arr[mid] == 0) return first(arr, (mid + 1), high); // If element is not first 1, recur for left side else return first(arr, low, (mid - 1)); } return -1; } // Function to print rows with maximum // and minimum number of zeroes static void rowWith0s( int [,]mat) { // Initialize max values int max_row_index = 0, max = int .MinValue; // Initialize min values int min_row_index = 0, min = int .MaxValue; // Traverse for each row and count number of 0s // by finding the index of first 1 int i, index; for (i = 0; i < R; i++) { index = first(GetRow(mat,i), 0, C - 1); int cntZeroes = 0; // If index = -1, that is there is no 1 // in the row, count of zeroes will be C if (index == -1) { cntZeroes = C; } // Else, count of zeroes will be index // of first 1 else { cntZeroes = index; } // Find max row index if (max < cntZeroes) { max = cntZeroes; max_row_index = i; } // Find min row index if (min > cntZeroes) { min = cntZeroes; min_row_index = i; } } Console.WriteLine ( "Row with min 0s: " + (min_row_index + 1)); Console.WriteLine ( "Row with max 0s: " + (max_row_index + 1)); } public static int [] GetRow( int [,] matrix, int row) { var rowLength = matrix.GetLength(1); var rowVector = new int [rowLength]; for ( var i = 0; i < rowLength; i++) rowVector[i] = matrix[row, i]; return rowVector; } // Driver code public static void Main (String[] args) { int [,]mat = { { 0, 0, 0, 1 }, { 0, 1, 1, 1 }, { 1, 1, 1, 1 }, { 0, 0, 0, 0 } }; rowWith0s(mat); } } /* This code contributed by PrinciRaj1992 */ |
Row with min 0s: 3 Row with max 0s: 4
Recommended Posts:
- Find row number of a binary matrix having maximum number of 1s
- Find alphabet in a Matrix which has maximum number of stars around it
- Minimum number of steps to convert a given matrix into Upper Hessenberg matrix
- Minimum number of steps to convert a given matrix into Diagonally Dominant Matrix
- Maximum and Minimum in a square matrix.
- Print index of columns sorted by count of zeroes in the Given Matrix
- Find row with maximum sum in a Matrix
- Find a sub matrix with maximum XOR
- Find maximum element of each row in a matrix
- Find column with maximum sum in a Matrix
- Find maximum element of each column in a matrix
- Program to find the maximum element in a Matrix
- Find minimum steps required to reach the end of a matrix | Set - 1
- Find minimum steps required to reach the end of a matrix | Set 2
- Find Maximum side length of square in a Matrix
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.