# Find politeness of a number

Given an integer n. Find politeness of number n. Politeness of a number is defined as the number of ways it can be expressed as the sum of consecutive integers.

```Input: n = 15
Output: 3
Explanation:
There are only three ways to express
15 as sum of consecutive integers i.e.,
15 = 1 + 2 + 3 + 4 + 5
15 = 4 + 5 + 6
15 = 7 + 8

Input: n = 9;
Output:  2
There are two ways of representation:
9 = 2 + 3 + 4
9 = 4 + 5
```
We strongly recommend that you click here and practice it, before moving on to the solution.

Naive approach is to run a loop one inside another and find the sum of every consecutive integers up to n. Time complexity of this approach will be O(n2) which will not be sufficient for large value of n.

Efficient approach is to use factorization. We factorize the number n and count the number of odd factors. Total number of odd factors (except 1) is equal to politeness of the number. Refer this for proof of this fact. In general if a number can be represented as ap * bq * cr … where a, b, c, … are prime factors of n. If a = 2 (even) then discard it and count total number of odd factors which can be written as [(q + 1) * (r + 1) * …] – 1 (Here 1 is subtracted because single term in representation is not allowed).

How does above formula work? The fact is, if a number is expressed as ap * bq * cr … where a, b, c, … are prime factors of n, then number of divisors is (p+1)*(q+1)*(r+1) ……
To simplify, let there be one factor and number is expressed as ap. Divisors are 1, a, a2, …. ap. The count of divisors is p+1. Now let us take a slightly more complicated case apbp. The divisors are :
1, a, a2, …. ap
b, ba, ba2, …. bap
b2, b2a, b2a2, …. b2ap
…………….
…………….
bq, bqa, bqa2, …. bqap

The count of above terms is (p+1)*(q+1). Similarly, we can prove for more prime factors.

Illustration : For n = 90, decomposition of prime factors will be as follows:-
=> 90 = 2 * 32 * 51. The power of odd prime factors 3, 5 are 2 and 1 respectively. Apply above formula as: (2 + 1) * (1 + 1) -1 = 5. Hence 5 will be the answer. We can crosscheck it. All odd factors are 3, 5, 9, 15 and 45.

Below is the program of above steps:-

## C++

 `// C+ program to find politeness of number ` `#include ` `using` `namespace` `std; ` ` `  `// A function to count all odd prime factors ` `// of a given number n ` `int` `countOddPrimeFactors(``int` `n) ` `{ ` `    ``int` `result = 1; ` ` `  `    ``// Eliminate all even prime factor of number of n ` `    ``while` `(n % 2 == 0) ` `        ``n /= 2; ` ` `  `    ``// n must be odd at this point, so iterate for only ` `    ``// odd numbers till sqrt(n) ` `    ``for` `(``int` `i = 3; i * i <= n; i += 2) { ` `        ``int` `divCount = 0; ` ` `  `        ``// if i divides n, then start counting of ` `        ``// Odd divisors ` `        ``while` `(n % i == 0) { ` `            ``n /= i; ` `            ``++divCount; ` `        ``} ` ` `  `        ``result *= divCount + 1; ` `    ``} ` ` `  `    ``// If n odd prime still remains then count it ` `    ``if` `(n > 2) ` `        ``result *= 2; ` ` `  `    ``return` `result; ` `} ` ` `  `int` `politness(``int` `n) ` `{ ` `    ``return` `countOddPrimeFactors(n) - 1; ` `} ` ` `  `// Driver program to test above function ` `int` `main() ` `{ ` `    ``int` `n = 90; ` `    ``cout << ``"Politness of "` `<< n << ``" = "` `         ``<< politness(n) << ``"\n"``; ` ` `  `    ``n = 15; ` `    ``cout << ``"Politness of "` `<< n << ``" = "` `         ``<< politness(n) << ``"\n"``; ` `    ``return` `0; ` `} `

## Java

 `// Java program to find politeness of a number ` ` `  `public` `class` `Politeness { ` `    ``// A function to count all odd prime factors ` `    ``// of a given number n ` `    ``static` `int` `countOddPrimeFactors(``int` `n) ` `    ``{ ` `        ``int` `result = ``1``; ` ` `  `        ``// Eliminate all even prime factor of number of n ` `        ``while` `(n % ``2` `== ``0``) ` `            ``n /= ``2``; ` ` `  `        ``// n must be odd at this point, so iterate ` `        ``// for only odd numbers till sqrt(n) ` `        ``for` `(``int` `i = ``3``; i * i <= n; i += ``2``) { ` `            ``int` `divCount = ``0``; ` ` `  `            ``// if i divides n, then start counting of ` `            ``// Odd divisors ` `            ``while` `(n % i == ``0``) { ` `                ``n /= i; ` `                ``++divCount; ` `            ``} ` ` `  `            ``result *= divCount + ``1``; ` `        ``} ` `        ``// If n odd prime still remains then count it ` `        ``if` `(n > ``2``) ` `            ``result *= ``2``; ` ` `  `        ``return` `result; ` `    ``} ` ` `  `    ``static` `int` `politness(``int` `n) ` `    ``{ ` `        ``return` `countOddPrimeFactors(n) - ``1``; ` `    ``} ` ` `  `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `n = ``90``; ` `        ``System.out.println(``"Politness of "` `+ n + ``" = "` `                           ``+ politness(n)); ` ` `  `        ``n = ``15``; ` `        ``System.out.println(``"Politness of "` `+ n + ``" = "` `                           ``+ politness(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by Saket Kumar `

## Python

 `# Python program to find politeness of number ` ` `  `# A function to count all odd prime factors ` `# of a given number n ` `def` `countOddPrimeFactors(n) : ` `    ``result ``=` `1``; ` `  `  `    ``# Eliminate all even prime factor of  ` `    ``# number of n ` `    ``while` `(n ``%` `2` `=``=` `0``) : ` `        ``n ``/``=` `2` `  `  `    ``# n must be odd at this point, so iterate ` `    ``# for only odd numbers till sqrt(n) ` `    ``i ``=` `3` `    ``while` `i ``*` `i <``=` `n : ` `        ``divCount ``=` `0` `  `  `        ``# if i divides n, then start counting  ` `        ``# of Odd divisors ` `        ``while` `(n ``%` `i ``=``=` `0``) : ` `            ``n ``/``=` `i ` `            ``divCount ``=` `divCount ``+` `1` `        `  `        ``result ``=` `result ``*` `divCount ``+` `1` `        ``i ``=` `i ``+` `2` `  `  `    ``# If n odd prime still remains then count it ` `    ``if` `(n > ``2``) : ` `        ``result ``=` `result ``*` `2` `         `  `    ``return` `result ` `     `  `  `  `def` `politness( n) : ` `    ``return` `countOddPrimeFactors(n) ``-` `1``; ` ` `  `# Driver program to test above function ` `n ``=` `90` `print` `"Politness of "``, n, ``" = "``, politness(n) ` `n ``=` `15` `print` `"Politness of "``, n, ``" = "``, politness(n) ` ` `  `# This code is contributed by Nikita Tiwari. `

## C#

 `// C# program to find politeness of a number. ` `using` `System; ` ` `  `public` `class` `GFG { ` `     `  `    ``// A function to count all odd prime  ` `    ``// factors of a given number n ` `    ``static` `int` `countOddPrimeFactors(``int` `n) ` `    ``{ ` `         `  `        ``int` `result = 1; ` ` `  `        ``// Eliminate all even prime factor  ` `        ``// of number of n ` `        ``while` `(n % 2 == 0) ` `            ``n /= 2; ` ` `  `        ``// n must be odd at this point, so ` `        ``// iterate for only odd numbers ` `        ``// till sqrt(n) ` `        ``for` `(``int` `i = 3; i * i <= n; i += 2) ` `        ``{ ` `            ``int` `divCount = 0; ` ` `  `            ``// if i divides n, then start ` `            ``// counting of Odd divisors ` `            ``while` `(n % i == 0) { ` `                ``n /= i; ` `                ``++divCount; ` `            ``} ` ` `  `            ``result *= divCount + 1; ` `        ``} ` `         `  `        ``// If n odd prime still remains  ` `        ``// then count it ` `        ``if` `(n > 2) ` `            ``result *= 2; ` ` `  `        ``return` `result; ` `    ``} ` ` `  `    ``static` `int` `politness(``int` `n) ` `    ``{ ` `        ``return` `countOddPrimeFactors(n) - 1; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `n = 90; ` `        ``Console.WriteLine(``"Politness of "` `               ``+ n + ``" = "` `+ politness(n)); ` ` `  `        ``n = 15; ` `        ``Console.WriteLine(``"Politness of "`  `               ``+ n + ``" = "` `+ politness(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by nitin mittal. `

## PHP

 ` 2) ` `        ``\$result` `*= 2; ` ` `  `    ``return` `\$result``; ` `} ` ` `  `function` `politness(``\$n``) ` `{ ` `    ``return` `countOddPrimeFactors(``\$n``) - 1; ` `} ` ` `  `    ``// Driver Code ` `    ``\$n` `= 90; ` `    ``echo` `"Politness of "` `, ``\$n` `, ``" = "` `               ``, politness(``\$n``), ``"\n"``; ` ` `  `    ``\$n` `= 15; ` `    ``echo` `"Politness of "` `, ``\$n` `, ``" = "` `               ``, politness(``\$n``) ,``"\n"``; ` ` `  `// This code is contributed by nitin mittal. ` `?> `

```Output:
Politness of 90 = 5
Politness of 15 = 3
```

Time complexity: O(sqrt(n))
Auxiliary space: O(1)

Reference: Wikipedia

This article is contributed by Shubham Bansal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

My Personal Notes arrow_drop_up

Improved By : nitin mittal, rahulojhaiit

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.