Given three arrays a[], b[] and c[] of N elements representing the three sides of **N** triangles. The task is to find the number of triangles that are unique out of given triangles. A triangle is non-unique if all of its sides match with all the sides of some other triangle in length.

**Examples:**

Input:a[] = {1, 2}, b[] = {2, 3}, c[] = {3, 5}Output:2

The triangles have sides 1, 2, 3 and 2, 3, 5 respectively.

None of them have same sides. Thus both are unique.

Input:a[] = {7, 5, 8, 2, 2}, b[] = {6, 7, 2, 3, 4}, c[] = {5, 6, 9, 4, 3}Output:1

Only triangle with sides 8, 2 and 9 is unique.

**Approach:** The idea is, for each triangle, sort all of its sides and then store it in a map, if all those three sides are already present in the map then increase the frequency by 1, else its frequency will be 1. The count of elements of the map which have frequency 1 in the end will be the answer.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` ` ` `// Function to return the number of unique triangles` `int` `UniqueTriangles(` `int` `a[], ` `int` `b[], ` `int` `c[], ` `int` `n)` `{` ` ` `vector<` `int` `> sides[n];` ` ` ` ` `// Map to store the frequency of triangles` ` ` `// with same sides` ` ` `map<vector<` `int` `>, ` `int` `> m;` ` ` ` ` `for` `(` `int` `i = 0; i < n; i++) {` ` ` ` ` `// Push all the sides of the current triangle` ` ` `sides[i].push_back(a[i]);` ` ` `sides[i].push_back(b[i]);` ` ` `sides[i].push_back(c[i]);` ` ` ` ` `// Sort the three sides` ` ` `sort(sides[i].begin(), sides[i].end());` ` ` ` ` `// Store the frequency of the sides` ` ` `// of the triangle` ` ` `m[sides[i]] = m[sides[i]] + 1;` ` ` `}` ` ` ` ` `map<vector<` `int` `>, ` `int` `>::iterator i;` ` ` ` ` `// To store the count of unique triangles` ` ` `int` `count = 0;` ` ` `for` `(i = m.begin(); i != m.end(); i++) {` ` ` ` ` `// If current triangle has unique sides` ` ` `if` `(i->second == 1)` ` ` `count++;` ` ` `}` ` ` ` ` `return` `count;` `}` ` ` `// Driver code` `int` `main()` `{` ` ` `int` `a[] = { 7, 5, 8, 2, 2 };` ` ` `int` `b[] = { 6, 7, 2, 3, 4 };` ` ` `int` `c[] = { 5, 6, 9, 4, 3 };` ` ` ` ` `int` `n = ` `sizeof` `(a) / ` `sizeof` `(` `int` `);` ` ` ` ` `cout << UniqueTriangles(a, b, c, n);` ` ` ` ` `return` `0;` `}` |

## Python3

`# Python3 implementation of the approach` `from` `collections ` `import` `defaultdict` ` ` `# Function to return the number` `# of unique triangles` `def` `UniqueTriangles(a, b, c, n):` ` ` ` ` `sides ` `=` `[` `None` `for` `i ` `in` `range` `(n)]` ` ` ` ` `# Map to store the frequency of ` ` ` `# triangles with same sides` ` ` `m ` `=` `defaultdict(` `lambda` `:` `0` `)` ` ` ` ` `for` `i ` `in` `range` `(` `0` `, n):` ` ` ` ` `# Push all the sides of the current triangle` ` ` `sides[i] ` `=` `(a[i], b[i], c[i]) ` ` ` ` ` `# Sort the three sides` ` ` `sides[i] ` `=` `tuple` `(` `sorted` `(sides[i]))` ` ` ` ` `# Store the frequency of the sides` ` ` `# of the triangle` ` ` `m[sides[i]] ` `+` `=` `1` ` ` ` ` `# To store the count of unique triangles` ` ` `count ` `=` `0` ` ` `for` `i ` `in` `m: ` ` ` ` ` `# If current triangle has unique sides` ` ` `if` `m[i] ` `=` `=` `1` `:` ` ` `count ` `+` `=` `1` ` ` ` ` `return` `count` ` ` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` ` ` `a ` `=` `[` `7` `, ` `5` `, ` `8` `, ` `2` `, ` `2` `] ` ` ` `b ` `=` `[` `6` `, ` `7` `, ` `2` `, ` `3` `, ` `4` `] ` ` ` `c ` `=` `[` `5` `, ` `6` `, ` `9` `, ` `4` `, ` `3` `] ` ` ` ` ` `n ` `=` `len` `(a)` ` ` ` ` `print` `(UniqueTriangles(a, b, c, n))` ` ` `# This code is contributed by Rituraj Jain` |

**Output:**

1

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend live classes with industry experts, please refer **Geeks Classes Live** and **Geeks Classes Live USA**