Maximum Path Sum in a Binary Tree
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree.
Example:
Input: Root of below tree 1 / \ 2 3 Output: 6 See below diagram for another example. 1+2+3
For each node there can be four ways that the max path goes through the node:
1. Node only
2. Max path through Left Child + Node
3. Max path through Right Child + Node
4. Max path through Left Child + Node + Max path through Right Child
The idea is to keep trace of four paths and pick up the max one in the end. An important thing to note is, root of every subtree need to return maximum path sum such that at most one child of root is involved. This is needed for parent function call. In below code, this sum is stored in ‘max_single’ and returned by the recursive function.
C++
// C/C++ program to find maximum path sum in Binary Tree #include<bits/stdc++.h> using namespace std; // A binary tree node struct Node { int data; struct Node* left, *right; }; // A utility function to allocate a new node struct Node* newNode( int data) { struct Node* newNode = new Node; newNode->data = data; newNode->left = newNode->right = NULL; return (newNode); } // This function returns overall maximum path sum in 'res' // And returns max path sum going through root. int findMaxUtil(Node* root, int &res) { //Base Case if (root == NULL) return 0; // l and r store maximum path sum going through left and // right child of root respectively int l = findMaxUtil(root->left,res); int r = findMaxUtil(root->right,res); // Max path for parent call of root. This path must // include at-most one child of root int max_single = max(max(l, r) + root->data, root->data); // Max Top represents the sum when the Node under // consideration is the root of the maxsum path and no // ancestors of root are there in max sum path int max_top = max(max_single, l + r + root->data); res = max(res, max_top); // Store the Maximum Result. return max_single; } // Returns maximum path sum in tree with given root int findMaxSum(Node *root) { // Initialize result int res = INT_MIN; // Compute and return result findMaxUtil(root, res); return res; } // Driver program int main( void ) { struct Node *root = newNode(10); root->left = newNode(2); root->right = newNode(10); root->left->left = newNode(20); root->left->right = newNode(1); root->right->right = newNode(-25); root->right->right->left = newNode(3); root->right->right->right = newNode(4); cout << "Max path sum is " << findMaxSum(root); return 0; } |
Java
// Java program to find maximum path sum in Binary Tree /* Class containing left and right child of current node and key value*/ class Node { int data; Node left, right; public Node( int item) { data = item; left = right = null ; } } // An object of Res is passed around so that the // same value can be used by multiple recursive calls. class Res { public int val; } class BinaryTree { // Root of the Binary Tree Node root; // This function returns overall maximum path sum in 'res' // And returns max path sum going through root. int findMaxUtil(Node node, Res res) { // Base Case if (node == null ) return 0 ; // l and r store maximum path sum going through left and // right child of root respectively int l = findMaxUtil(node.left, res); int r = findMaxUtil(node.right, res); // Max path for parent call of root. This path must // include at-most one child of root int max_single = Math.max(Math.max(l, r) + node.data, node.data); // Max Top represents the sum when the Node under // consideration is the root of the maxsum path and no // ancestors of root are there in max sum path int max_top = Math.max(max_single, l + r + node.data); // Store the Maximum Result. res.val = Math.max(res.val, max_top); return max_single; } int findMaxSum() { return findMaxSum(root); } // Returns maximum path sum in tree with given root int findMaxSum(Node node) { // Initialize result // int res2 = Integer.MIN_VALUE; Res res = new Res(); res.val = Integer.MIN_VALUE; // Compute and return result findMaxUtil(node, res); return res.val; } /* Driver program to test above functions */ public static void main(String args[]) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 10 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 10 ); tree.root.left.left = new Node( 20 ); tree.root.left.right = new Node( 1 ); tree.root.right.right = new Node(- 25 ); tree.root.right.right.left = new Node( 3 ); tree.root.right.right.right = new Node( 4 ); System.out.println( "maximum path sum is : " + tree.findMaxSum()); } } |
Python
# Python program to find maximum path sum in Binary Tree # A Binary Tree Node class Node: # Constructor to create a new node def __init__( self , data): self .data = data self .left = None self .right = None # This function returns overall maximum path sum in 'res' # And returns max path sum going through root def findMaxUtil(root): # Base Case if root is None : return 0 # l and r store maximum path sum going through left # and right child of root respectively l = findMaxUtil(root.left) r = findMaxUtil(root.right) # Max path for parent call of root. This path # must include at most one child of root max_single = max ( max (l, r) + root.data, root.data) # Max top represents the sum when the node under # consideration is the root of the maxSum path and # no ancestor of root are there in max sum path max_top = max (max_single, l + r + root.data) # Static variable to store the changes # Store the maximum result findMaxUtil.res = max (findMaxUtil.res, max_top) return max_single # Return maximum path sum in tree with given root def findMaxSum(root): # Initialize result findMaxUtil.res = float ( "-inf" ) # Compute and return result findMaxUtil(root) return findMaxUtil.res # Driver program root = Node( 10 ) root.left = Node( 2 ) root.right = Node( 10 ); root.left.left = Node( 20 ); root.left.right = Node( 1 ); root.right.right = Node( - 25 ); root.right.right.left = Node( 3 ); root.right.right.right = Node( 4 ); print "Max path sum is " ,findMaxSum(root); # This code is contributed by Nikhil Kumar Singh(nickzuck_007) |
C#
// C# program to find maximum // path sum in Binary Tree using System; /* Class containing left and right child of current node and key value*/ public class Node { public int data; public Node left, right; public Node( int item) { data = item; left = right = null ; } } // An object of Res is passed // around so that the same value // can be used by multiple recursive calls. class Res { public int val; } public class BinaryTree { // Root of the Binary Tree Node root; // This function returns overall // maximum path sum in 'res' And // returns max path sum going through root. int findMaxUtil(Node node, Res res) { // Base Case if (node == null ) return 0; // l and r store maximum path // sum going through left and // right child of root respectively int l = findMaxUtil(node.left, res); int r = findMaxUtil(node.right, res); // Max path for parent call of root. // This path must include // at-most one child of root int max_single = Math.Max(Math.Max(l, r) + node.data, node.data); // Max Top represents the sum // when the Node under // consideration is the root // of the maxsum path and no // ancestors of root are there // in max sum path int max_top = Math.Max(max_single, l + r + node.data); // Store the Maximum Result. res.val = Math.Max(res.val, max_top); return max_single; } int findMaxSum() { return findMaxSum(root); } // Returns maximum path // sum in tree with given root int findMaxSum(Node node) { // Initialize result // int res2 = int.MinValue; Res res = new Res(); res.val = int .MinValue; // Compute and return result findMaxUtil(node, res); return res.val; } /* Driver code */ public static void Main(String []args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(10); tree.root.left = new Node(2); tree.root.right = new Node(10); tree.root.left.left = new Node(20); tree.root.left.right = new Node(1); tree.root.right.right = new Node(-25); tree.root.right.right.left = new Node(3); tree.root.right.right.right = new Node(4); Console.WriteLine( "maximum path sum is : " + tree.findMaxSum()); } } // This code is contributed Rajput-Ji. |
Javascript
<script> // JavaScript program to find maximum // path sum in Binary Tree class Node { constructor(item) { this .left = null ; this .right = null ; this .data = item; } } let val; // Root of the Binary Tree let root; // This function returns overall maximum path sum in 'res' // And returns max path sum going through root. function findMaxUtil(node) { // Base Case if (node == null ) return 0; // l and r store maximum path sum going through left and // right child of root respectively let l = findMaxUtil(node.left); let r = findMaxUtil(node.right); // Max path for parent call of root. This path must // include at-most one child of root let max_single = Math.max(Math.max(l, r) + node.data, node.data); // Max Top represents the sum when the Node under // consideration is the root of the maxsum path and no // ancestors of root are there in max sum path let max_top = Math.max(max_single, l + r + node.data); // Store the Maximum Result. val = Math.max(val, max_top); return max_single; } function findMaxsum() { return findMaxSum(root); } // Returns maximum path sum in tree with given root function findMaxSum(node) { // Initialize result // int res2 = Integer.MIN_VALUE; val = Number.MIN_VALUE; // Compute and return result findMaxUtil(node); return val; } root = new Node(10); root.left = new Node(2); root.right = new Node(10); root.left.left = new Node(20); root.left.right = new Node(1); root.right.right = new Node(-25); root.right.right.left = new Node(3); root.right.right.right = new Node(4); document.write( "Max path sum is : " + findMaxsum()); </script> |
Output:
Max path sum is 42
Time Complexity: O(n) where n is number of nodes in Binary Tree.
This article is contributed by Anmol Varshney (FB Profile: https://www.facebook.com/anmolvarshney695). Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above