Find maximum length Snake sequence

Given a grid of numbers, find maximum length Snake sequence and print it. If multiple snake sequences exists with the maximum length, print any one of them.

A snake sequence is made up of adjacent numbers in the grid such that for each number, the number on the right or the number below it is +1 or -1 its value. For example, if you are at location (x, y) in the grid, you can either move right i.e. (x, y+1) if that number is ± 1 or move down i.e. (x+1, y) if that number is ± 1.

For example,

9, 6, 5, 2
8, 7, 6, 5
7, 3, 1, 6
1, 1, 1, 7

In above grid, the longest snake sequence is: (9, 8, 7, 6, 5, 6, 7)



Below figure shows all possible paths –

snakesSequence

We strongly recommend you to minimize your browser and try this yourself first.

The idea is to use Dynamic Programming. For each cell of the matrix, we keep maximum length of a snake which ends in current cell. The maximum length snake sequence will have maximum value. The maximum value cell will correspond to tail of the snake. In order to print the snake, we need to backtrack from tail all the way back to snake’s head.

Let T[i][i] represent maximum length of a snake which ends at cell (i, j), then for given matrix M, the DP relation is defined as –

T[0][0] = 0
T[i][j] = max(T[i][j], T[i][j – 1] + 1) if M[i][j] = M[i][j – 1] ± 1
T[i][j] = max(T[i][j], T[i – 1][j] + 1) if M[i][j] = M[i – 1][j] ± 1

Below is C++ implementation of the idea –

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find maximum length
// Snake sequence and print it
#include <bits/stdc++.h>
using namespace std;
#define M 4
#define N 4
  
struct Point
{
    int x, y;
};
  
// Function to find maximum length Snake sequence path
// (i, j) corresponds to tail of the snake
list<Point> findPath(int grid[M][N], int mat[M][N],
                     int i, int j)
{
    list<Point> path;
  
    Point pt = {i, j};
    path.push_front(pt);
  
    while (grid[i][j] != 0)
    {
       if (i > 0 &&
           grid[i][j] - 1 == grid[i - 1][j])
       {
           pt = {i - 1, j};
           path.push_front(pt);
           i--;
       }
       else if (j > 0 &&
                grid[i][j] - 1 == grid[i][j - 1])
       {
           pt = {i, j - 1};
           path.push_front(pt);
           j--;
       }
    }
  
    return path;
}
  
// Function to find maximum length Snake sequence
void findSnakeSequence(int mat[M][N])
{
    // table to store results of subproblems
    int lookup[M][N];
  
    // initialize by 0
    memset(lookup, 0, sizeof lookup);
  
    // stores maximum length of Snake sequence
    int max_len = 0;
  
    // store cordinates to snake's tail
    int max_row = 0;
    int max_col = 0;
  
    // fill the table in bottom-up fashion
    for (int i = 0; i < M; i++)
    {
        for (int j = 0; j < N; j++)
        {
            // do except for (0, 0) cell
            if (i || j)
            {
                // look above
                if (i > 0 &&
                    abs(mat[i - 1][j] - mat[i][j]) == 1)
                {
                    lookup[i][j] = max(lookup[i][j],
                               lookup[i - 1][j] + 1);
  
                    if (max_len < lookup[i][j])
                    {
                        max_len = lookup[i][j];
                        max_row = i, max_col = j;
                    }
                }
  
                // look left
                if (j > 0 &&
                    abs(mat[i][j - 1] - mat[i][j]) == 1)
                {
                    lookup[i][j] = max(lookup[i][j],
                                       lookup[i][j - 1] + 1);
                    if (max_len < lookup[i][j])
                    {
                        max_len = lookup[i][j];
                        max_row = i, max_col = j;
                    }
                }
            }
        }
    }
  
    cout << "Maximum length of Snake sequence is: "
         << max_len << endl;
  
    // find maximum length Snake sequence path
    list<Point> path = findPath(lookup, mat, max_row,
                                             max_col);
  
    cout << "Snake sequence is:";
    for (auto it = path.begin(); it != path.end(); it++)
        cout << endl << mat[it->x][it->y] << " ("
             << it->x << ", " << it->y << ")" ;
}
  
// Driver code
int main()
{
    int mat[M][N] =
    {
        {9, 6, 5, 2},
        {8, 7, 6, 5},
        {7, 3, 1, 6},
        {1, 1, 1, 7},
    };
  
    findSnakeSequence(mat);
  
    return 0;
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find maximum length
# Snake sequence and print it
  
M = 4
N = 4
  
class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y
  
# Function to find maximum length Snake sequence path
# (i, j) corresponds to tail of the snake
def findPath(grid, mat, i, j):
    path = list()
  
    pt = Point(i, j)
    path.append(pt)
  
    while (grid[i][j] != 0):
        if (i > 0 and grid[i][j]-1 == grid[i-1][j]):
            pt = Point(i-1, j)
            path.append(pt)
            i -= 1
        elif (j > 0 and grid[i][j]-1 == grid[i][j-1]):
            pt = Point(i, j-1)
            path.append(pt)
            j -= 1
    return path
  
# Function to find maximum length Snake sequence
def findSnakeSequence(mat):
  
    # table to store results of subproblems
    # initialize by 0
    lookup = [[0 for i in range(N)] for j in range(M)]
  
    # stores maximum length of Snake sequence
    max_len = 0
  
    # store cordinates to snake's tail
    max_row = 0
    max_col = 0
  
    # fill the table in bottom-up fashion
    for i in range(M):
        for j in range(N):
            # do except for (0, 0) cell
            if (i or j):
                # look above
                if (i > 0 and
                    abs(mat[i-1][j] - mat[i][j]) == 1):
                    lookup[i][j] = max(lookup[i][j],
                                       lookup[i-1][j] + 1)
                    if (max_len < lookup[i][j]):
                        max_len = lookup[i][j]
                        max_row = i
                        max_col = j
  
                # look left
                if (j > 0 and
                    abs(mat[i][j-1] - mat[i][j]) == 1):
                    lookup[i][j] = max(lookup[i][j],
                                       lookup[i][j-1] + 1)
                    if (max_len < lookup[i][j]):
                        max_len = lookup[i][j]
                        max_row = i
                        max_col = j
  
    print("Maximum length of Snake sequence is:", max_len)
  
    # find maximum length Snake sequence path
    path = findPath(lookup, mat, max_row, max_col)
  
    print("Snake sequence is:")
    for ele in reversed(path):
        print(mat[ele.x][ele.y],
              " (", ele.x, ", ", ele.y, ")", sep = "")
  
# Driver code
mat = [[9, 6, 5, 2],
       [8, 7, 6, 5],
       [7, 3, 1, 6],
       [1, 1, 1, 7]]
  
findSnakeSequence(mat)
  
# This code is contributed
# by Soumen Ghosh

chevron_right



Output :

Maximum length of Snake sequence is: 6
Snake sequence is:
9 (0, 0)
8 (1, 0)
7 (1, 1)
6 (1, 2)
5 (1, 3)
6 (2, 3)
7 (3, 3)

Time complexity of above solution is O(M*N). Auxiliary space used by above solution is O(M*N). If we are not required to print the snake, space  can be further reduced to O(N) as we only uses the result from last row.

Reference: Stack Overflow

This article is contributed by Aditya Goel. If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



My Personal Notes arrow_drop_up