Given two integers **N** and **K**, the task is to find **K** numbers(**A _{1}, A_{2}, …, A_{K}**) such that

**∑**is equal to

_{i=1}^{K}A_{i}**N**and

**∑**is maximum.

_{i=1}^{K}A_{i}^{2}**Examples:**

Input:N = 3, K = 2Output:1 2Explanation:The two numbers are 1 and 2 as their sum is equal to N and 1^{2}+ 2^{2}is maximum.Input:N = 10, K = 3Output:1 8 1

**Approach:** The idea is to take number **1**, **K – 1** times and number **N – K + 1** once. The sum of these numbers is equal to **N** and sum of squares of these numbers is always maximum. For any two non-negative numbers **a** and **b**, **(a ^{2} + b^{2})** is always less than

**1 + (a + b – 1)**.

^{2}Below is the implementation of the above approach:

## C++

`// C++ program to find K numbers` `// with sum equal to N and the` `// sum of their squares maximized` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function that prints the` `// required K numbers` `void` `printKNumbers(` `int` `N, ` `int` `K)` `{` ` ` `// Print 1, K-1 times` ` ` `for` `(` `int` `i = 0; i < K - 1; i++)` ` ` `cout << 1 << ` `" "` `;` ` ` `// Print (N-K+1)` ` ` `cout << (N - K + 1);` `}` `// Driver Code` `int` `main()` `{` ` ` `int` `N = 10, K = 3;` ` ` `printKNumbers(N, K);` ` ` `return` `0;` `}` |

## Java

`// Java program to find K numbers` `// with sum equal to N and the` `// sum of their squares maximized` `class` `GFG{` `// Function that prints the` `// required K numbers` `static` `void` `printKNumbers(` `int` `N, ` `int` `K)` `{` ` ` `// Print 1, K-1 times` ` ` `for` `(` `int` `i = ` `0` `; i < K - ` `1` `; i++)` ` ` `System.out.print(` `1` `+ ` `" "` `);` ` ` `// Print (N - K + 1)` ` ` `System.out.print(N - K + ` `1` `);` `}` `// Driver Code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `N = ` `10` `, K = ` `3` `;` ` ` `printKNumbers(N, K);` `}` `}` `// This code is contributed by Amit Katiyar` |

## Python3

`# Python3 program to find K numbers` `# with a sum equal to N and the` `# sum of their squares maximized` `# Function that prints the` `# required K numbers` `def` `printKNumbers(N, K):` ` ` ` ` `# Print 1, K-1 times` ` ` `for` `i ` `in` `range` `(K ` `-` `1` `):` ` ` `print` `(` `1` `, end ` `=` `' '` `)` ` ` ` ` `# Print (N-K+1)` ` ` `print` `(N ` `-` `K ` `+` `1` `)` ` ` `# Driver code` `if` `__name__` `=` `=` `'__main__'` `:` ` ` ` ` `(N, K) ` `=` `(` `10` `, ` `3` `)` ` ` ` ` `printKNumbers(N, K)` ` ` `# This code is contributed by rutvik_56` |

## C#

`// C# program to find K numbers` `// with sum equal to N and the` `// sum of their squares maximized` `using` `System;` ` ` `class` `GFG{` `// Function that prints the` `// required K numbers` `static` `void` `printKNumbers(` `int` `N, ` `int` `K)` `{` ` ` ` ` `// Print 1, K-1 times` ` ` `for` `(` `int` `i = 0; i < K - 1; i++)` ` ` `Console.Write(1 + ` `" "` `);` ` ` `// Print (N - K + 1)` ` ` `Console.Write(N - K + 1);` `}` `// Driver code` `public` `static` `void` `Main(String[] args)` `{` ` ` `int` `N = 10, K = 3;` ` ` ` ` `printKNumbers(N, K);` `}` `}` `// This code is contributed by shivanisinghss2110` |

## Javascript

`<script>` ` ` `// Javascript program to find K numbers` ` ` `// with sum equal to N and the` ` ` `// sum of their squares maximized` ` ` ` ` `// Function that prints the` ` ` `// required K numbers` ` ` `function` `printKNumbers(N, K)` ` ` `{` ` ` `// Print 1, K-1 times` ` ` `for` `(let i = 0; i < K - 1; i++)` ` ` `document.write(1 + ` `" "` `);` ` ` `// Print (N-K+1)` ` ` `document.write(N - K + 1);` ` ` `}` ` ` `let N = 10, K = 3;` ` ` ` ` `printKNumbers(N, K);` ` ` `</script>` |

**Output:**

1 1 8

**Time Complexity:** *O(K)* **Auxiliary Space:** *O(1)*