Edit Distance | DP-5
Given two strings str1 and str2 and below operations that can be performed on str1. Find minimum number of edits (operations) required to convert ‘str1’ into ‘str2’.
- Insert
- Remove
- Replace
All of the above operations are of equal cost.
Examples:
Input: str1 = “geek”, str2 = “gesek”
Output: 1
Explanation: We can convert str1 into str2 by inserting a ‘s’.Input: str1 = “cat”, str2 = “cut”
Output: 1
Explanation: We can convert str1 into str2 by replacing ‘a’ with ‘u’.Input: str1 = “sunday”, str2 = “saturday”
Output: 3
Explanation: Last three and first characters are same. We basically need to convert “un” to “atur”. This can be done using below three operations. Replace ‘n’ with ‘r’, insert t, insert a
What are the subproblems in this case?
The idea is to process all characters one by one starting from either from left or right sides of both strings.
Let us traverse from right corner, there are two possibilities for every pair of character being traversed.
m: Length of str1 (first string) n: Length of str2 (second string)
- If last characters of two strings are same, nothing much to do. Ignore last characters and get count for remaining strings. So we recur for lengths m-1 and n-1.
- Else (If last characters are not same), we consider all operations on ‘str1’, consider all three operations on last character of first string, recursively compute minimum cost for all three operations and take minimum of three values.
- Insert: Recur for m and n-1
- Remove: Recur for m-1 and n
- Replace: Recur for m-1 and n-1
Below is implementation of above Naive recursive solution.
C
#include <stdio.h> #include <string.h> // Utility function to find minimum of three numbers int min( int x, int y, int z) { return x < y ? (x < z ? x : z) : (y < z ? y : z); } int editDist( char * str1, char * str2, int m, int n) { // If first string is empty, the only option is to // insert all characters of second string into first if (m == 0) return n; // If second string is empty, the only option is to // remove all characters of first string if (n == 0) return m; // If last characters of two strings are same, nothing // much to do. Ignore last characters and get count for // remaining strings. if (str1[m - 1] == str2[n - 1]) return editDist(str1, str2, m - 1, n - 1); // If last characters are not same, consider all three // operations on last character of first string, // recursively compute minimum cost for all three // operations and take minimum of three values. return 1 + min( editDist(str1, str2, m, n - 1), // Insert editDist(str1, str2, m - 1, n), // Remove editDist(str1, str2, m - 1, n - 1) // Replace ); } // Driver code int main() { // your code goes here char str1[] = "sunday" ; char str2[] = "saturday" ; int m = strlen (str1); int n = strlen (str2); printf ( "%d" , editDist(str1, str2, m, n)); return 0; } |
C++
// A Naive recursive C++ program to find minimum number // operations to convert str1 to str2 #include <bits/stdc++.h> using namespace std; // Utility function to find minimum of three numbers int min( int x, int y, int z) { return min(min(x, y), z); } int editDist(string str1, string str2, int m, int n) { // If first string is empty, the only option is to // insert all characters of second string into first if (m == 0) return n; // If second string is empty, the only option is to // remove all characters of first string if (n == 0) return m; // If last characters of two strings are same, nothing // much to do. Ignore last characters and get count for // remaining strings. if (str1[m - 1] == str2[n - 1]) return editDist(str1, str2, m - 1, n - 1); // If last characters are not same, consider all three // operations on last character of first string, // recursively compute minimum cost for all three // operations and take minimum of three values. return 1 + min(editDist(str1, str2, m, n - 1), // Insert editDist(str1, str2, m - 1, n), // Remove editDist(str1, str2, m - 1, n - 1) // Replace ); } // Driver code int main() { // your code goes here string str1 = "sunday" ; string str2 = "saturday" ; cout << editDist(str1, str2, str1.length(), str2.length()); return 0; } |
Java
// A Naive recursive Java program to find minimum number // operations to convert str1 to str2 class EDIST { static int min( int x, int y, int z) { if (x <= y && x <= z) return x; if (y <= x && y <= z) return y; else return z; } static int editDist(String str1, String str2, int m, int n) { // If first string is empty, the only option is to // insert all characters of second string into first if (m == 0 ) return n; // If second string is empty, the only option is to // remove all characters of first string if (n == 0 ) return m; // If last characters of two strings are same, // nothing much to do. Ignore last characters and // get count for remaining strings. if (str1.charAt(m - 1 ) == str2.charAt(n - 1 )) return editDist(str1, str2, m - 1 , n - 1 ); // If last characters are not same, consider all // three operations on last character of first // string, recursively compute minimum cost for all // three operations and take minimum of three // values. return 1 + min(editDist(str1, str2, m, n - 1 ), // Insert editDist(str1, str2, m - 1 , n), // Remove editDist(str1, str2, m - 1 , n - 1 ) // Replace ); } // Driver Code public static void main(String args[]) { String str1 = "sunday" ; String str2 = "saturday" ; System.out.println(editDist( str1, str2, str1.length(), str2.length())); } } /*This code is contributed by Rajat Mishra*/ |
Python3
# A Naive recursive Python program to find minimum number # operations to convert str1 to str2 def editDistance(str1, str2, m, n): # If first string is empty, the only option is to # insert all characters of second string into first if m = = 0 : return n # If second string is empty, the only option is to # remove all characters of first string if n = = 0 : return m # If last characters of two strings are same, nothing # much to do. Ignore last characters and get count for # remaining strings. if str1[m - 1 ] = = str2[n - 1 ]: return editDistance(str1, str2, m - 1 , n - 1 ) # If last characters are not same, consider all three # operations on last character of first string, recursively # compute minimum cost for all three operations and take # minimum of three values. return 1 + min (editDistance(str1, str2, m, n - 1 ), # Insert editDistance(str1, str2, m - 1 , n), # Remove editDistance(str1, str2, m - 1 , n - 1 ) # Replace ) # Driver code str1 = "sunday" str2 = "saturday" print (editDistance(str1, str2, len (str1), len (str2))) # This code is contributed by Bhavya Jain |
C#
// A Naive recursive C# program to // find minimum numberoperations // to convert str1 to str2 using System; class GFG { static int min( int x, int y, int z) { if (x <= y && x <= z) return x; if (y <= x && y <= z) return y; else return z; } static int editDist(String str1, String str2, int m, int n) { // If first string is empty, the only option is to // insert all characters of second string into first if (m == 0) return n; // If second string is empty, the only option is to // remove all characters of first string if (n == 0) return m; // If last characters of two strings are same, // nothing much to do. Ignore last characters and // get count for remaining strings. if (str1[m - 1] == str2[n - 1]) return editDist(str1, str2, m - 1, n - 1); // If last characters are not same, consider all // three operations on last character of first // string, recursively compute minimum cost for all // three operations and take minimum of three // values. return 1 + min(editDist(str1, str2, m, n - 1), // Insert editDist(str1, str2, m - 1, n), // Remove editDist(str1, str2, m - 1, n - 1) // Replace ); } // Driver code public static void Main() { String str1 = "sunday" ; String str2 = "saturday" ; Console.WriteLine( editDist(str1, str2, str1.Length, str2.Length)); } } // This Code is Contributed by Sam007 |
PHP
<?php // A Naive recursive Python program // to find minimum number operations // to convert str1 to str2 function editDistance( $str1 , $str2 , $m , $n ) { // If first string is empty, // the only option is to insert. // all characters of second // string into first if ( $m == 0) return $n ; // If second string is empty, // the only option is to // remove all characters of // first string if ( $n == 0) return $m ; // If last characters of two // strings are same, nothing // much to do. Ignore last // characters and get count // for remaining strings. if ( $str1 [ $m - 1] == $str2 [ $n - 1]) { return editDistance( $str1 , $str2 , $m - 1, $n - 1); } // If last characters are not same, // consider all three operations on // last character of first string, // recursively compute minimum cost // for all three operations and take // minimum of three values. return 1 + min(editDistance( $str1 , $str2 , $m , $n - 1), // Insert editDistance( $str1 , $str2 , $m - 1, $n ), // Remove editDistance( $str1 , $str2 , $m - 1, $n - 1)); // Replace } // Driver Code $str1 = "sunday" ; $str2 = "saturday" ; echo editDistance( $str1 , $str2 , strlen ( $str1 ), strlen ( $str2 )); // This code is contributed // by Shivi_Aggarwal ?> |
Javascript
<script> // Javascript program to // find minimum numberoperations // to convert str1 to str2 function min(x, y, z) { if (x <= y && x <= z) return x; if (y <= x && y <= z) return y; else return z; } function editDist(str1, str2, m, n) { // If first string is empty, the // only option is to insert all // characters of second string into first if (m == 0) return n; // If second string is empty, the only // option is to remove all characters // of first string if (n == 0) return m; // If last characters of two strings are // same, nothing much to do. Ignore last // characters and get count for remaining // strings. if (str1[m - 1] == str2[n - 1]) return editDist(str1, str2, m - 1, n - 1); // If last characters are not same, consider all // three operations on last character of first // string, recursively compute minimum cost for all // three operations and take minimum of three // values. return 1 + min(editDist(str1, str2, m, n - 1), // Insert editDist(str1, str2, m - 1, n), // Remove editDist(str1, str2, m - 1, n - 1)); // Replace } // Driver code let str1 = "sunday" ; let str2 = "saturday" ; document.write(editDist(str1, str2, str1.length, str2.length)); // This code is contributed by target_2 </script> |
3
Time Complexity of above solution is exponential. In worst case, we may end up doing O(3m) operations. The worst case happens when none of characters of two strings match. Below is a recursive call diagram for worst case.
Auxiliary Space: O(1), because no extra space is utilized.
We can see that many subproblems are solved, again and again, for example, eD(2, 2) is called three times. Since same subproblems are called again, this problem has Overlapping Subproblems property. So Edit Distance problem has both properties (see this and this) of a dynamic programming problem. Like other typical Dynamic Programming(DP) problems, recomputations of same subproblems can be avoided by constructing a temporary array that stores results of subproblems.
C
#include <stdio.h> #include <stdlib.h> #include <string.h> // Utility function to find the minimum of three numbers int min( int x, int y, int z) { if (x <= y && x <= z) return x; if (y <= x && y <= z) return y; return z; } int editDistDP( char * str1, char * str2, int m, int n) { // Create a table to store results of subproblems int dp[m + 1][n + 1]; // Fill d[][] in bottom up manner for ( int i = 0; i <= m; i++) { for ( int j = 0; j <= n; j++) { // If first string is empty, only option is to // insert all characters of second string if (i == 0) dp[i][j] = j; // Min. operations = j // If second string is empty, only option is to // remove all characters of second string else if (j == 0) dp[i][j] = i; // Min. operations = i // If last characters are same, ignore last char // and recur for remaining string else if (str1[i - 1] == str2[j - 1]) dp[i][j] = dp[i - 1][j - 1]; // If the last character is different, consider // all possibilities and find the minimum else dp[i][j] = 1 + min(dp[i][j - 1], // Insert dp[i - 1][j], // Remove dp[i - 1][j - 1]); // Replace } } return dp[m][n]; } // Driver code int main() { char str1[] = "sunday" ; char str2[] = "saturday" ; int m = strlen (str1); int n = strlen (str2); printf ( "%d\n" , editDistDP(str1, str2, m, n)); return 0; } |
C++
// A Dynamic Programming based C++ program to find minimum // number operations to convert str1 to str2 #include <bits/stdc++.h> using namespace std; // Utility function to find the minimum of three numbers int min( int x, int y, int z) { return min(min(x, y), z); } int editDistDP(string str1, string str2, int m, int n) { // Create a table to store results of subproblems int dp[m + 1][n + 1]; // Fill d[][] in bottom up manner for ( int i = 0; i <= m; i++) { for ( int j = 0; j <= n; j++) { // If first string is empty, only option is to // insert all characters of second string if (i == 0) dp[i][j] = j; // Min. operations = j // If second string is empty, only option is to // remove all characters of second string else if (j == 0) dp[i][j] = i; // Min. operations = i // If last characters are same, ignore last char // and recur for remaining string else if (str1[i - 1] == str2[j - 1]) dp[i][j] = dp[i - 1][j - 1]; // If the last character is different, consider // all possibilities and find the minimum else dp[i][j] = 1 + min(dp[i][j - 1], // Insert dp[i - 1][j], // Remove dp[i - 1][j - 1]); // Replace } } return dp[m][n]; } // Driver code int main() { // your code goes here string str1 = "sunday" ; string str2 = "saturday" ; cout << editDistDP(str1, str2, str1.length(), str2.length()); return 0; } |
Java
// A Dynamic Programming based Java program to find minimum // number operations to convert str1 to str2 import java.io.*; class EDIST { static int min( int x, int y, int z) { if (x <= y && x <= z) return x; if (y <= x && y <= z) return y; else return z; } static int editDistDP(String str1, String str2, int m, int n) { // Create a table to store results of subproblems int dp[][] = new int [m + 1 ][n + 1 ]; // Fill d[][] in bottom up manner for ( int i = 0 ; i <= m; i++) { for ( int j = 0 ; j <= n; j++) { // If first string is empty, only option is // to insert all characters of second string if (i == 0 ) dp[i][j] = j; // Min. operations = j // If second string is empty, only option is // to remove all characters of second string else if (j == 0 ) dp[i][j] = i; // Min. operations = i // If last characters are same, ignore last // char and recur for remaining string else if (str1.charAt(i - 1 ) == str2.charAt(j - 1 )) dp[i][j] = dp[i - 1 ][j - 1 ]; // If the last character is different, // consider all possibilities and find the // minimum else dp[i][j] = 1 + min( dp[i][j - 1 ], // Insert dp[i - 1 ][j], // Remove dp[i - 1 ][j - 1 ]); // Replace } } return dp[m][n]; } // Driver Code public static void main(String args[]) { String str1 = "sunday" ; String str2 = "saturday" ; System.out.println(editDistDP( str1, str2, str1.length(), str2.length())); } } /*This code is contributed by Rajat Mishra*/ |
Python3
# A Dynamic Programming based Python program for edit # distance problem def editDistDP(str1, str2, m, n): # Create a table to store results of subproblems dp = [[ 0 for x in range (n + 1 )] for x in range (m + 1 )] # Fill d[][] in bottom up manner for i in range (m + 1 ): for j in range (n + 1 ): # If first string is empty, only option is to # insert all characters of second string if i = = 0 : dp[i][j] = j # Min. operations = j # If second string is empty, only option is to # remove all characters of second string elif j = = 0 : dp[i][j] = i # Min. operations = i # If last characters are same, ignore last char # and recur for remaining string elif str1[i - 1 ] = = str2[j - 1 ]: dp[i][j] = dp[i - 1 ][j - 1 ] # If last character are different, consider all # possibilities and find minimum else : dp[i][j] = 1 + min (dp[i][j - 1 ], # Insert dp[i - 1 ][j], # Remove dp[i - 1 ][j - 1 ]) # Replace return dp[m][n] # Driver code str1 = "sunday" str2 = "saturday" print (editDistDP(str1, str2, len (str1), len (str2))) # This code is contributed by Bhavya Jain |
C#
// A Dynamic Programming based // C# program to find minimum // number operations to // convert str1 to str2 using System; class GFG { static int min( int x, int y, int z) { if (x <= y && x <= z) return x; if (y <= x && y <= z) return y; else return z; } static int editDistDP(String str1, String str2, int m, int n) { // Create a table to store // results of subproblems int [, ] dp = new int [m + 1, n + 1]; // Fill d[][] in bottom up manner for ( int i = 0; i <= m; i++) { for ( int j = 0; j <= n; j++) { // If first string is empty, only option is // to insert all characters of second string if (i == 0) // Min. operations = j dp[i, j] = j; // If second string is empty, only option is // to remove all characters of second string else if (j == 0) // Min. operations = i dp[i, j] = i; // If last characters are same, ignore last // char and recur for remaining string else if (str1[i - 1] == str2[j - 1]) dp[i, j] = dp[i - 1, j - 1]; // If the last character is different, // consider all possibilities and find the // minimum else dp[i, j] = 1 + min(dp[i, j - 1], // Insert dp[i - 1, j], // Remove dp[i - 1, j - 1]); // Replace } } return dp[m, n]; } // Driver code public static void Main() { String str1 = "sunday" ; String str2 = "saturday" ; Console.Write(editDistDP(str1, str2, str1.Length, str2.Length)); } } // This Code is Contributed by Sam007 |
PHP
<?php // A Dynamic Programming based // Python program for edit // distance problem function editDistDP( $str1 , $str2 , $m , $n ) { // Fill d[][] in bottom up manner for ( $i = 0; $i <= $m ; $i ++) { for ( $j = 0; $j <= $n ; $j ++) { // If first string is empty, // only option is to insert // all characters of second string if ( $i == 0) $dp [ $i ][ $j ] = $j ; // Min. operations = j // If second string is empty, // only option is to remove // all characters of second string else if ( $j == 0) $dp [ $i ][ $j ] = $i ; // Min. operations = i // If last characters are same, // ignore last char and recur // for remaining string else if ( $str1 [ $i - 1] == $str2 [ $j - 1]) $dp [ $i ][ $j ] = $dp [ $i - 1][ $j - 1]; // If last character are different, // consider all possibilities and // find minimum else { $dp [ $i ][ $j ] = 1 + min( $dp [ $i ][ $j - 1], // Insert $dp [ $i - 1][ $j ], // Remove $dp [ $i - 1][ $j - 1]); // Replace } } } return $dp [ $m ][ $n ] ; } // Driver Code $str1 = "sunday" ; $str2 = "saturday" ; echo editDistDP( $str1 , $str2 , strlen ( $str1 ), strlen ( $str2 )); // This code is contributed // by Shivi_Aggarwal ?> |
Javascript
<script> // A Dynamic Programming based // Javascript program to find minimum // number operations to convert str1 to str2 function min(x,y,z) { if (x <= y && x <= z) return x; if (y <= x && y <= z) return y; else return z; } function editDistDP(str1,str2,m,n) { // Create a table to store results of subproblems let dp = new Array(m + 1); for (let i=0;i<m+1;i++) { dp[i]= new Array(n+1); for (let j=0;j<n+1;j++) { dp[i][j]=0; } } // Fill d[][] in bottom up manner for (let i = 0; i <= m; i++) { for (let j = 0; j <= n; j++) { // If first string is empty, only option is // to insert all characters of second string if (i == 0) dp[i][j] = j; // Min. operations = j // If second string is empty, only option is // to remove all characters of second string else if (j == 0) dp[i][j] = i; // Min. operations = i // If last characters are same, ignore last // char and recur for remaining string else if (str1[i - 1] == str2[j - 1]) dp[i][j] = dp[i - 1][j - 1]; // If the last character is different, // consider all possibilities and find the // minimum else dp[i][j] = 1 + min(dp[i][j - 1], // Insert dp[i - 1][j], // Remove dp[i - 1] [j - 1]); // Replace } } return dp[m][n]; } // Driver Code let str1 = "sunday" ; let str2 = "saturday" ; document.write(editDistDP( str1, str2, str1.length, str2.length)); // This code is contributed by unknown2108 </script> |
3
Time Complexity: O(m x n)
Auxiliary Space: O(m x n)
Space Complex Solution: In the above-given method we require O(m x n) space. This will not be suitable if the length of strings is greater than 2000 as it can only create 2D array of 2000 x 2000. To fill a row in DP array we require only one row the upper row. For example, if we are filling the i = 10 rows in DP array we require only values of 9th row. So we simply create a DP array of 2 x str1 length. This approach reduces the space complexity. Here is the C++ implementation of the above-mentioned problem
C
#include <math.h> #include <stdio.h> #include <string.h> void EditDistDP( char * str1, char * str2) { int len1 = strlen (str1); int len2 = strlen (str2); // Create a DP array to memoize result // of previous computations int DP[2][len1 + 1]; // To fill the DP array with 0 memset (DP, 0, sizeof DP); // Base condition when second string // is empty then we remove all characters for ( int i = 0; i <= len1; i++) { DP[0][i] = i; } // Start filling the DP // This loop run for every // character in second string for ( int i = 1; i <= len2; i++) { // This loop compares the char from // second string with first string // characters for ( int j = 0; j <= len1; j++) { // if first string is empty then // we have to perform add character // operation to get second string if (j == 0) { DP[i % 2][j] = i; } // if character from both string // is same then we do not perform any // operation . here i % 2 is for bound // the row number. else if (str1[j - 1] == str2[i - 1]) { DP[i % 2][j] = DP[(i - 1) % 2][j - 1]; } // if character from both string is // not same then we take the minimum // from three specified operation else { DP[i % 2][j] = 1 + ( int )fmin( DP[(i - 1) % 2][j], fmin(DP[i % 2][j - 1], DP[(i - 1) % 2][j - 1])); } } } // after complete fill the DP array // if the len2 is even then we end // up in the 0th row else we end up // in the 1th row so we take len2 % 2 // to get row printf ( "%d\n" , DP[len2 % 2][len1]); } // Driver program int main() { char str1[] = "food" ; char str2[] = "money" ; EditDistDP(str1, str2); return 0; } |
C++
// A Space efficient Dynamic Programming // based C++ program to find minimum // number operations to convert str1 to str2 #include <bits/stdc++.h> using namespace std; void EditDistDP(string str1, string str2) { int len1 = str1.length(); int len2 = str2.length(); // Create a DP array to memoize result // of previous computations int DP[2][len1 + 1]; // To fill the DP array with 0 memset (DP, 0, sizeof DP); // Base condition when second string // is empty then we remove all characters for ( int i = 0; i <= len1; i++) DP[0][i] = i; // Start filling the DP // This loop run for every // character in second string for ( int i = 1; i <= len2; i++) { // This loop compares the char from // second string with first string // characters for ( int j = 0; j <= len1; j++) { // if first string is empty then // we have to perform add character // operation to get second string if (j == 0) DP[i % 2][j] = i; // if character from both string // is same then we do not perform any // operation . here i % 2 is for bound // the row number. else if (str1[j - 1] == str2[i - 1]) { DP[i % 2][j] = DP[(i - 1) % 2][j - 1]; } // if character from both string is // not same then we take the minimum // from three specified operation else { DP[i % 2][j] = 1 + min(DP[(i - 1) % 2][j], min(DP[i % 2][j - 1], DP[(i - 1) % 2][j - 1])); } } } // after complete fill the DP array // if the len2 is even then we end // up in the 0th row else we end up // in the 1th row so we take len2 % 2 // to get row cout << DP[len2 % 2][len1] << endl; } // Driver program int main() { string str1 = "food" ; string str2 = "money" ; EditDistDP(str1, str2); return 0; } |
Java
// A Space efficient Dynamic Programming // based Java program to find minimum // number operations to convert str1 to str2 import java.util.*; class GFG { static void EditDistDP(String str1, String str2) { int len1 = str1.length(); int len2 = str2.length(); // Create a DP array to memoize result // of previous computations int [][]DP = new int [ 2 ][len1 + 1 ]; // Base condition when second String // is empty then we remove all characters for ( int i = 0 ; i <= len1; i++) DP[ 0 ][i] = i; // Start filling the DP // This loop run for every // character in second String for ( int i = 1 ; i <= len2; i++) { // This loop compares the char from // second String with first String // characters for ( int j = 0 ; j <= len1; j++) { // if first String is empty then // we have to perform add character // operation to get second String if (j == 0 ) DP[i % 2 ][j] = i; // if character from both String // is same then we do not perform any // operation . here i % 2 is for bound // the row number. else if (str1.charAt(j - 1 ) == str2.charAt(i - 1 )) { DP[i % 2 ][j] = DP[(i - 1 ) % 2 ][j - 1 ]; } // if character from both String is // not same then we take the minimum // from three specified operation else { DP[i % 2 ][j] = 1 + Math.min(DP[(i - 1 ) % 2 ][j], Math.min(DP[i % 2 ][j - 1 ], DP[(i - 1 ) % 2 ][j - 1 ])); } } } // after complete fill the DP array // if the len2 is even then we end // up in the 0th row else we end up // in the 1th row so we take len2 % 2 // to get row System.out.print(DP[len2 % 2 ][len1] + "\n" ); } // Driver program public static void main(String[] args) { String str1 = "food" ; String str2 = "money" ; EditDistDP(str1, str2); } } // This code is contributed by aashish1995 |
Python3
# A Space efficient Dynamic Programming # based Python3 program to find minimum # number operations to convert str1 to str2 def EditDistDP(str1, str2): len1 = len (str1) len2 = len (str2) # Create a DP array to memoize result # of previous computations DP = [[ 0 for i in range (len1 + 1 )] for j in range ( 2 )]; # Base condition when second String # is empty then we remove all characters for i in range ( 0 , len1 + 1 ): DP[ 0 ][i] = i # Start filling the DP # This loop run for every # character in second String for i in range ( 1 , len2 + 1 ): # This loop compares the char from # second String with first String # characters for j in range ( 0 , len1 + 1 ): # If first String is empty then # we have to perform add character # operation to get second String if (j = = 0 ): DP[i % 2 ][j] = i # If character from both String # is same then we do not perform any # operation . here i % 2 is for bound # the row number. elif (str1[j - 1 ] = = str2[i - 1 ]): DP[i % 2 ][j] = DP[(i - 1 ) % 2 ][j - 1 ] # If character from both String is # not same then we take the minimum # from three specified operation else : DP[i % 2 ][j] = ( 1 + min (DP[(i - 1 ) % 2 ][j], min (DP[i % 2 ][j - 1 ], DP[(i - 1 ) % 2 ][j - 1 ]))) # After complete fill the DP array # if the len2 is even then we end # up in the 0th row else we end up # in the 1th row so we take len2 % 2 # to get row print (DP[len2 % 2 ][len1], "") # Driver code if __name__ = = '__main__' : str1 = "food" str2 = "money" EditDistDP(str1, str2) # This code is contributed by gauravrajput1 |
C#
// A Space efficient Dynamic Programming // based C# program to find minimum // number operations to convert str1 to str2 using System; class GFG { static void EditDistDP(String str1, String str2) { int len1 = str1.Length; int len2 = str2.Length; // Create a DP array to memoize result // of previous computations int [,]DP = new int [2, len1 + 1]; // Base condition when second String // is empty then we remove all characters for ( int i = 0; i <= len1; i++) DP[0, i] = i; // Start filling the DP // This loop run for every // character in second String for ( int i = 1; i <= len2; i++) { // This loop compares the char from // second String with first String // characters for ( int j = 0; j <= len1; j++) { // if first String is empty then // we have to perform add character // operation to get second String if (j == 0) DP[i % 2, j] = i; // if character from both String // is same then we do not perform any // operation . here i % 2 is for bound // the row number. else if (str1[j - 1] == str2[i - 1]) { DP[i % 2, j] = DP[(i - 1) % 2, j - 1]; } // if character from both String is // not same then we take the minimum // from three specified operation else { DP[i % 2, j] = 1 + Math.Min(DP[(i - 1) % 2, j], Math.Min(DP[i % 2, j - 1], DP[(i - 1) % 2, j - 1])); } } } // after complete fill the DP array // if the len2 is even then we end // up in the 0th row else we end up // in the 1th row so we take len2 % 2 // to get row Console.Write(DP[len2 % 2, len1] + "\n" ); } // Driver program public static void Main(String[] args) { String str1 = "food" ; String str2 = "money" ; EditDistDP(str1, str2); } } // This code is contributed by aashish1995 |
Javascript
<script> // A Space efficient Dynamic Programming // based Javascript program to find minimum // number operations to convert str1 to str2 function EditDistDP(str1, str2) { let len1 = str1.length; let len2 = str2.length; // Create a DP array to memoize result // of previous computations let DP = new Array(2); for (let i = 0; i < 2; i++) { DP[i] = new Array(len1+1); for (let j = 0; j < len1 + 1; j++) DP[i][j] = 0; } // Base condition when second String // is empty then we remove all characters for (let i = 0; i <= len1; i++) DP[0][i] = i; // Start filling the DP // This loop run for every // character in second String for (let i = 1; i <= len2; i++) { // This loop compares the char from // second String with first String // characters for (let j = 0; j <= len1; j++) { // if first String is empty then // we have to perform add character // operation to get second String if (j == 0) DP[i % 2][j] = i; // if character from both String // is same then we do not perform any // operation . here i % 2 is for bound // the row number. else if (str1[j-1] == str2[i-1]) { DP[i % 2][j] = DP[(i - 1) % 2][j - 1]; } // if character from both String is // not same then we take the minimum // from three specified operation else { DP[i % 2][j] = 1 + Math.min(DP[(i - 1) % 2][j], Math.min(DP[i % 2][j - 1], DP[(i - 1) % 2][j - 1])); } } } // after complete fill the DP array // if the len2 is even then we end // up in the 0th row else we end up // in the 1th row so we take len2 % 2 // to get row document.write(DP[len2 % 2][len1] + "<br>" ); } // Driver program let str1 = "food" ; let str2 = "money" ; EditDistDP(str1, str2); // This code is contributed by patel2127. </script> |
4
Time Complexity: O(m x n)
Auxiliary Space: O( m )
This is a memoized version of recursion i.e. Top-Down DP:
C
#include <stdio.h> #include <stdlib.h> #include <string.h> int min( int x, int y, int z) { if (x < y && x < z) return x; else if (y < x && y < z) return y; else return z; } int minDis( char * s1, char * s2, int n, int m) { int dp[n + 1][m + 1]; // Fill dp[][] table in bottom up manner for ( int i = 0; i <= n; i++) { for ( int j = 0; j <= m; j++) { // If first string is empty, only option is to // insert all characters of second string if (i == 0) dp[i][j] = j; // If second string is empty, only option is to // remove all characters of second string else if (j == 0) dp[i][j] = i; // If last characters are same, ignore last char // and recur for remaining string else if (s1[i - 1] == s2[j - 1]) dp[i][j] = dp[i - 1][j - 1]; // If last character are different, consider all // possibilities and find minimum else dp[i][j] = 1 + min(dp[i][j - 1], // Insert dp[i - 1][j], // Remove dp[i - 1][j - 1]); // Replace } } return dp[n][m]; } int main() { char * str1 = "voldemort" ; char * str2 = "dumbledore" ; int n = strlen (str1), m = strlen (str2); printf ( "%d" , minDis(str1, str2, n, m)); return 0; } |
C++14
#include <bits/stdc++.h> using namespace std; int minDis(string s1, string s2, int n, int m, vector<vector< int > >& dp) { // If any string is empty, // return the remaining characters of other string if (n == 0) return m; if (m == 0) return n; // To check if the recursive tree // for given n & m has already been executed if (dp[n][m] != -1) return dp[n][m]; // If characters are equal, execute // recursive function for n-1, m-1 if (s1[n - 1] == s2[m - 1]) { return dp[n][m] = minDis(s1, s2, n - 1, m - 1, dp); } // If characters are nt equal, we need to // find the minimum cost out of all 3 operations. // 1. insert 2.delete 3.replace else { int insert, del, replace; // temp variables insert = minDis(s1, s2, n, m - 1, dp); del = minDis(s1, s2, n - 1, m, dp); replace = minDis(s1, s2, n - 1, m - 1, dp); return dp[n][m] = 1 + min(insert, min(del, replace)); } } // Driver program int main() { string str1 = "voldemort" ; string str2 = "dumbledore" ; int n = str1.length(), m = str2.length(); vector<vector< int > > dp(n + 1, vector< int >(m + 1, -1)); cout << minDis(str1, str2, n, m, dp); return 0; // This code is a contribution of Bhavneet Singh } |
Java
import java.util.*; class GFG { static int minDis(String s1, String s2, int n, int m, int [][] dp) { // If any String is empty, // return the remaining characters of other String if (n == 0 ) return m; if (m == 0 ) return n; // To check if the recursive tree // for given n & m has already been executed if (dp[n][m] != - 1 ) return dp[n][m]; // If characters are equal, execute // recursive function for n-1, m-1 if (s1.charAt(n - 1 ) == s2.charAt(m - 1 )) { return dp[n][m] = minDis(s1, s2, n - 1 , m - 1 , dp); } // If characters are nt equal, we need to // find the minimum cost out of all 3 operations. else { int insert, del, replace; // temp variables insert = minDis(s1, s2, n, m - 1 , dp); del = minDis(s1, s2, n - 1 , m, dp); replace = minDis(s1, s2, n - 1 , m - 1 , dp); return dp[n][m] = 1 + Math.min(insert, Math.min(del, replace)); } } // Driver program public static void main(String[] args) { String str1 = "voldemort" ; String str2 = "dumbledore" ; int n = str1.length(), m = str2.length(); int [][] dp = new int [n + 1 ][m + 1 ]; for ( int i = 0 ; i < n + 1 ; i++) Arrays.fill(dp[i], - 1 ); System.out.print(minDis(str1, str2, n, m, dp)); } } // This code is contributed by gauravrajput1 |
Python3
def minDis(s1, s2, n, m, dp) : # If any string is empty, # return the remaining characters of other string if (n = = 0 ) : return m if (m = = 0 ) : return n # To check if the recursive tree # for given n & m has already been executed if (dp[n][m] ! = - 1 ) : return dp[n][m]; # If characters are equal, execute # recursive function for n-1, m-1 if (s1[n - 1 ] = = s2[m - 1 ]) : if (dp[n - 1 ][m - 1 ] = = - 1 ) : dp[n][m] = minDis(s1, s2, n - 1 , m - 1 , dp) return dp[n][m] else : dp[n][m] = dp[n - 1 ][m - 1 ] return dp[n][m] # If characters are nt equal, we need to # find the minimum cost out of all 3 operations. else : if (dp[n - 1 ][m] ! = - 1 ) : m1 = dp[n - 1 ][m] else : m1 = minDis(s1, s2, n - 1 , m, dp) if (dp[n][m - 1 ] ! = - 1 ) : m2 = dp[n][m - 1 ] else : m2 = minDis(s1, s2, n, m - 1 , dp) if (dp[n - 1 ][m - 1 ] ! = - 1 ) : m3 = dp[n - 1 ][m - 1 ] else : m3 = minDis(s1, s2, n - 1 , m - 1 , dp) dp[n][m] = 1 + min (m1, min (m2, m3)) return dp[n][m] # Driver code str1 = "voldemort" str2 = "dumbledore" n = len (str1) m = len (str2) dp = [[ - 1 for i in range (m + 1 )] for j in range (n + 1 )] print (minDis(str1, str2, n, m, dp)) # This code is contributed by divyesh072019. |
C#
using System; using System.Collections.Generic; class GFG { static int minDis( string s1, string s2, int n, int m, List<List< int >> dp) { // If any string is empty, // return the remaining characters of other string if (n == 0) return m; if (m == 0) return n; // To check if the recursive tree // for given n & m has already been executed if (dp[n][m] != -1) return dp[n][m]; // If characters are equal, execute // recursive function for n-1, m-1 if (s1[n - 1] == s2[m - 1]) { if (dp[n - 1][m - 1] == -1) { return dp[n][m] = minDis(s1, s2, n - 1, m - 1, dp); } else return dp[n][m] = dp[n - 1][m - 1]; } // If characters are nt equal, we need to // find the minimum cost out of all 3 operations. else { int m1, m2, m3; // temp variables if (dp[n - 1][m] != -1) { m1 = dp[n - 1][m]; } else { m1 = minDis(s1, s2, n - 1, m, dp); } if (dp[n][m - 1] != -1) { m2 = dp[n][m - 1]; } else { m2 = minDis(s1, s2, n, m - 1, dp); } if (dp[n - 1][m - 1] != -1) { m3 = dp[n - 1][m - 1]; } else { m3 = minDis(s1, s2, n - 1, m - 1, dp); } return dp[n][m] = 1+ Math.Min(m1, Math.Min(m2, m3)); } } // Driver code static void Main() { string str1 = "voldemort" ; string str2 = "dumbledore" ; int n = str1.Length, m = str2.Length; List<List< int >> dp = new List<List< int >>(); for ( int i = 0; i < n + 1; i++) { dp.Add( new List< int >()); for ( int j = 0; j < m + 1; j++) { dp[i].Add(-1); } } Console.WriteLine(minDis(str1, str2, n, m, dp)); } } // This code is contributed by divyeshrabadiya07. |
Javascript
<script> function minDis(s1,s2,n,m,dp) { // If any String is empty, // return the remaining characters of other String if (n == 0) return m; if (m == 0) return n; // To check if the recursive tree // for given n & m has already been executed if (dp[n][m] != -1) return dp[n][m]; // If characters are equal, execute // recursive function for n-1, m-1 if (s1[n - 1] == s2[m - 1]) { if (dp[n - 1][m - 1] == -1) { return dp[n][m] = minDis(s1, s2, n - 1, m - 1, dp); } else return dp[n][m] = dp[n - 1][m - 1]; } // If characters are nt equal, we need to // find the minimum cost out of all 3 operations. else { let m1, m2, m3; // temp variables if (dp[n-1][m] != -1) { m1 = dp[n - 1][m]; } else { m1 = minDis(s1, s2, n - 1, m, dp); } if (dp[n][m - 1] != -1) { m2 = dp[n][m - 1]; } else { m2 = minDis(s1, s2, n, m - 1, dp); } if (dp[n - 1][m - 1] != -1) { m3 = dp[n - 1][m - 1]; } else { m3 = minDis(s1, s2, n - 1, m - 1, dp); } return dp[n][m] = 1 + Math.min(m1, Math.min(m2, m3)); } } // Driver program let str1 = "voldemort" ; let str2 = "dumbledore" ; let n= str1.length, m = str2.length; let dp = new Array(n + 1); for (let i = 0; i < n + 1; i++) { dp[i]= new Array(m+1); for (let j=0;j<m+1;j++) dp[i][j]=-1; } document.write(minDis(str1, str2, n, m, dp)); // This code is contributed by avanitrachhadiya2155 </script> |
7
Time Complexity: O(m x n)
Auxiliary Space: O( m *n)+O(m+n) , (m*n) extra array space and (m+n) recursive stack space.
Space Optimization :
Given two strings string1 and string2 and we have to perform operations on string1. Find minimum number of edits (operations) required to convert ‘string1 ’ into ‘string2’.
we can do these three Operation:
- Insert a character at any position of the string.
- Remove any character from the string.
- Replace any character from the string with any other character.
Approach Contains :
- Let’s define the length of the two strings, as n, m.
int n = s.size();
int m = t.size();
2. Create the vectors.
we are creating the two vectors as Previous, Current of m+1 size (string2 size).
vector<int>prev(m+1, 0), curr(m+1, 0);
// vector<vector<int>>dp(n+1, vector<int>(m+1, 0));
3. then follow the String Matching. In this string matching we converts like
if(s[i-1] == t[j-1])
{
curr[j] = prev[j-1];
}
else
{
int mn = min(1 + prev[j], 1 + curr[j-1]);
curr[j] = min(mn, 1 + prev[j-1]);
}// if(s[i-1] == t[j-1])
// {
// dp[i][j] = dp[i-1][j-1];
// }
// else
// {
// int mn = min(1 + dp[i-1][j], 1 + dp[i][j-1]);
// dp[i][j] = min(mn, 1 + dp[i-1][j-1]);
// }
4. remember we are pointing dp vector like
instead of dp[i-1][j] –> prev // only
and
instead of dp[i][j-1] –> curr // only
C
#include <stdio.h> #include <stdlib.h> #include <string.h> int min( int a, int b, int c) { if (a < b && a < c) { return a; } else if (b < a && b < c) { return b; } else { return c; } } int editDistance( char * s, char * t) { int n = strlen (s); int m = strlen (t); int * prev = ( int *) calloc (m + 1, sizeof ( int )); int * curr = ( int *) calloc (m + 1, sizeof ( int )); for ( int j = 0; j <= m; j++) { prev[j] = j; } for ( int i = 1; i <= n; i++) { curr[0] = i; for ( int j = 1; j <= m; j++) { if (s[i - 1] == t[j - 1]) { curr[j] = prev[j - 1]; } else { int mn = min(1 + prev[j], 1 + curr[j - 1], 1 + prev[j - 1]); curr[j] = mn; } } memcpy (prev, curr, (m + 1) * sizeof ( int )); } int ans = prev[m]; free (prev); free (curr); return ans; } int main() { char s[] = "geek" ; char t[] = "gesek" ; int ans = editDistance(s, t); printf ( "%d\n" , ans); return 0; } |
C++
// A Space efficient Dynamic Programming // based C++ program to find minimum // number operations to convert str1 to str2 #include <bits/stdc++.h> using namespace std; class Solution { public : // space optimization int editDistance(string s, string t) { int n = s.size(); int m = t.size(); vector< int >prev(m+1, 0), curr(m+1, 0); for ( int j =0; j<=m; j++) { prev[j] = j; } for ( int i = 1; i <= n; i++) { curr[0] = i; for ( int j = 1; j<= m; j++) { if (s[i-1] == t[j-1]) { curr[j] = prev[j-1]; } else { int mn = min(1 + prev[j], 1 + curr[j-1]); curr[j] = min(mn, 1 + prev[j-1]); } } prev = curr; } return prev[m]; } }; int main() { string s = "geek" , t = "gesek" ; Solution ob; int ans = ob.editDistance(s, t); cout << ans << "\n" ; return 0; } |
Java
// A Space efficient Dynamic Programming // based Java program to find minimum // number operations to convert str1 to str2 import java.util.*; class Solution { // space optimization public int editDistance(String s, String t) { int n = s.length(); int m = t.length(); int [] prev = new int [m + 1 ]; int [] curr = new int [m + 1 ]; for ( int j = 0 ; j <= m; j++) { prev[j] = j; } for ( int i = 1 ; i <= n; i++) { curr[ 0 ] = i; for ( int j = 1 ; j <= m; j++) { if (s.charAt(i - 1 ) == t.charAt(j - 1 )) { curr[j] = prev[j - 1 ]; } else { int mn = Math.min( 1 + prev[j], 1 + curr[j - 1 ]); curr[j] = Math.min(mn, 1 + prev[j - 1 ]); } } prev = curr.clone(); } return prev[m]; } } public class Main { public static void main(String[] args) { String s = "geek" ; String t = "gesek" ; Solution ob = new Solution(); int ans = ob.editDistance(s, t); System.out.println(ans); } } |
Python3
# A Space efficient Dynamic Programming # based Python3 program to find minimum # number operations to convert str1 to str2 class Solution: def editDistance( self , s: str , t: str ) - > int : n = len (s) m = len (t) prev = [j for j in range (m + 1 )] curr = [ 0 ] * (m + 1 ) for i in range ( 1 , n + 1 ): curr[ 0 ] = i for j in range ( 1 , m + 1 ): if s[i - 1 ] = = t[j - 1 ]: curr[j] = prev[j - 1 ] else : mn = min ( 1 + prev[j], 1 + curr[j - 1 ]) curr[j] = min (mn, 1 + prev[j - 1 ]) prev = curr.copy() return prev[m] s = "geek" t = "gesek" ob = Solution() ans = ob.editDistance(s, t) print (ans) |
C#
using System; using System.Collections.Generic; class Solution { public int EditDistance( string s, string t) { int n = s.Length; int m = t.Length; List< int > prev = new List< int >(); List< int > curr = new List< int >(); for ( int j = 0; j <= m; j++) { prev.Add(j); } for ( int i = 1; i <= n; i++) { curr.Add(i); for ( int j = 1; j <= m; j++) { if (s[i - 1] == t[j - 1]) { curr.Add(prev[j - 1]); } else { int mn = Math.Min(1 + prev[j], 1 + curr[j - 1]); curr.Add(Math.Min(mn, 1 + prev[j - 1])); } } prev = new List< int >(curr); curr.Clear(); } return prev[m]; } } class Program { static void Main( string [] args) { string s = "geek" ; string t = "gesek" ; Solution ob = new Solution(); int ans = ob.EditDistance(s, t); Console.WriteLine(ans); } } // This code is contributed by sarojmcy2e |
Javascript
class Solution { // space optimization editDistance(s, t) { const n = s.length; const m = t.length; const prev = new Array(m + 1).fill(0); const curr = new Array(m + 1).fill(0); for (let j = 0; j <= m; j++) { prev[j] = j; } for (let i = 1; i <= n; i++) { curr[0] = i; for (let j = 1; j <= m; j++) { if (s[i - 1] === t[j - 1]) { curr[j] = prev[j - 1]; } else { const mn = Math.min(1 + prev[j], 1 + curr[j - 1]); curr[j] = Math.min(mn, 1 + prev[j - 1]); } } prev.splice(0, m + 1, ...curr); } return prev[m]; } } const s = "geek" ; const t = "gesek" ; const ob = new Solution(); const ans = ob.editDistance(s, t); console.log(ans); |
Output:
1
Time Complexity: O(m x n).
Auxiliary Space: O( m x n), it don’t take the extra (m+n) recursive stack space.
Applications: There are many practical applications of edit distance algorithm, refer Lucene API for sample. Another example, display all the words in a dictionary that are near proximity to a given wordincorrectly spelled word.
Thanks to Vivek Kumar for suggesting updates.
Thanks to Venki for providing initial post. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Please Login to comment...