Related Articles
Difference between reshape() and resize() method in Numpy
• Last Updated : 05 Sep, 2020

Both the numpy.reshape() and numpy.resize() methods are used to change the size of a NumPy array. The difference between them is that the reshape() does not changes the original array but only returns the changed array, whereas the resize() method returns nothing and directly changes the original array.

Example 1: Using reshape()

## Python3

 `# importing the module``import` `numpy as np ``   ` `# creating an array ``gfg ``=` `np.array([``1``, ``2``, ``3``, ``4``, ``5``, ``6``]) ``print``(``"Original array:"``)``display(gfg)  `` ` `# using reshape()``print``(``"Changed array"``)``display(gfg.reshape(``2``, ``3``)) ``   ` `print``(``"Original array:"``)``display(gfg)`

Output:

Example 2: Using resize()

## Python3

 `# importing the module``import` `numpy as np ``   ` `# creating an array ``gfg ``=` `np.array([``1``, ``2``, ``3``, ``4``, ``5``, ``6``]) ``print``(``"Original array:"``)``display(gfg)  `` ` `# using resize()``print``(``"Changed array"``)``# this will print nothing as None is returned``display(gfg.resize(``2``, ``3``)) ``   ` `print``(``"Original array:"``)``display(gfg)`

Output:

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up