Count subsequences with same values of Bitwise AND, OR and XOR

We are given an array arr of n element. We need to count number of non-empty subsequences such that these individual subsequences have same values of bitwise AND, OR and XOR. For example, we need to count a subsequence (x, y, z) if (x | y | z) is equal to (x & y & z) and (x ^ y ^ z). For a single element subsequence, we consider the element itself as result of XOR, AND and OR. Therefore all single element subsequences are always counted as part of result.

Examples:

Input :  a = [1, 3, 7]
Output : 3
Explanation: 
There are 7 non empty subsequence .
subsequence   OR  AND  XOR
{1}            1    1    1
{3}            3    3    3
{7}            7    7    7
{1, 3}         3    1    2
{1, 7}         7    1    6
{3, 7}         7    3    4
{1, 3, 7}      7    1    5
Out of 7, there are 3 subsequences {1}
{3} {7} which have same values of AND, 
OR and XOR. 

Input :  a[] = [0, 0, 0]
Output : 7
Explanation:  All 7 non empty subsequences 
have same values of AND, OR and XOR. 

Input : a[] = [2, 2, 2, 3, 4]
Output : 6
Explanation:  subsequence {2}, {2}, {2},
{2, 2, 2}, {3}, {4} have same values of
AND, OR and XOR. 

1) If there are n occurrences of zeroes in the given array, then will be 2n – 1 subsequences contributed by these zeroes.
2) If there are n occurrences of a non-zero element x, then there will be 2n-1 subsequences contributed by occurrences of this element. Please note that, in case of non-zero elements, only odd number of occurrences can cause same results for bitwise operators.

Find count of each element in the array then apply the above formulas.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <bits/stdc++.h>
using namespace std;
  
// function for finding count of  possible subsequence
int countSubseq(int arr[], int n)
{
    int count = 0;
  
    // creating a map to count the frequency of each element
    unordered_map<int, int> mp;
  
    // store frequency of each element
    for (int i = 0; i < n; i++)
        mp[arr[i]]++;
  
    // iterate through the map
    for (auto i : mp) {
  
        // add all possible combination for key equal zero
        if (i.first == 0)
            count += pow(2, i.second) - 1;
  
        // add all (odd number of elements) possible 
        // combination for key other than zero
        else
            count += pow(2, i.second - 1);
    }
    return count;
}
  
// driver function
int main()
{
    int arr[] = { 2, 2, 2, 5, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countSubseq(arr, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

import java .io.*; 
import java.util.*;
  
  
class GFG {
   
// function for finding count of  possible subsequence
static int countSubseq(int arr[], int n)
{
    int count = 0;
   
    // creating a map to count the frequency of each element
    HashMap<Integer,Integer>mp=new HashMap<Integer,Integer>();
   
    // store frequency of each element
    for (int i = 0; i < n; i++)
        if (mp.containsKey(arr[i]))
            mp.put(arr[i],mp.get(arr[i])+1);
        else
            mp.put(arr[i],1);
   
    // iterate through the map
    for (Map.Entry<Integer,Integer>entry:mp.entrySet()) {
   
        // add all possible combination for key equal zero
        if (entry.getKey() == 0)
            count += Math.pow(2, entry.getValue()) - 1;
   
        // add all (odd number of elements) possible 
        // combination for key other than zero
        else
            count += Math.pow(2, entry.getValue()- 1);
    }
    return count;
}
   
// driver function
public static void main(String[] args)
{
    int arr[] = { 2, 2, 2, 5, 6 };
    int n=arr.length;
    System.out.println(countSubseq(arr, n));
}
}
  
// This code is contributed by apurva raj

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

using System;
using System.Collections.Generic;
class GFG{
  
// function for finding count of possible subsequence
static int countSubseq(int []arr, int n)
{
    int count = 0;
  
    // creating a map to count the frequency of each element
     Dictionary<int, int> mp = new Dictionary<int,int>();
  
    // store frequency of each element
     for (int i = 0; i < n; i++) 
        
            if (mp.ContainsKey(arr[i]))  
            
                var val = mp[arr[i]]; 
                mp.Remove(arr[i]); 
                mp.Add(arr[i], val + 1);  
            }  
            else
            
                mp.Add(arr[i], 1); 
            
        }
  
    // iterate through the map
    foreach(KeyValuePair<int, int> entry in mp) {
  
        // add all possible combination for key equal zero
        if (entry.Key == 0)
            count += (int)(Math.Pow(2, entry.Value - 1));
  
        // add all (odd number of elements) possible 
        // combination for key other than zero
        else
            count += (int)(Math.Pow(2, entry.Value - 1));
    }
    return count;
}
  
// Driver function
public static void Main(String []args)  
    {
    int []arr = { 2, 2, 2, 5, 6 };
    int n = arr.Length;
    Console.WriteLine(countSubseq(arr, n));
}
}
  
// This code is contributed by shivanisinghss2110

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# function for finding count of possible subsequence
def countSubseq(arr, n):
    count = 0
  
    # creating a map to count the frequency of each element
    mp = {}
  
    # store frequency of each element
    for x in arr:
        if x in mp.keys():
            mp[x]+=1
        else:
            mp[x]=1
  
    # iterate through the map
    for i in mp.keys():
  
        # add all possible combination for key equal zero
        if (i == 0):
            count += pow(2, mp[i]) - 1
  
        # add all (odd number of elements) possible 
        # combination for key other than zero
        else:
            count += pow(2, mp[i] - 1)
    return count
  
# Driver function
arr= [2, 2, 2, 5, 6 ]
n = len(arr)
print(countSubseq(arr, n))
  
# This code is contributed by apurva raj

chevron_right


Output:

6

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.