Given an array of integers. Find the total number of subarrays whose product of all elements doesn’t contain repeating prime factor in prime decomposition of resulting number.
Examples:
Input: 2 3 9
Output: 3
Explanation:
Total sub-array are:-
{2}, {3}, {9}, {2, 3}, {3, 9}, {2, 3, 9}
Subarray which violets the property are:-
{9} -> {3 * 3}, Since 3 is a repeating prime
factor in prime decomposition of 9
{3, 9} -> {3 * 3 * 3}, 3 is a repeating prime
factor in prime decomposition of 27
{2, 3, 9} -> {2 * 3 * 3 * 3}, 3 is repeating
prime factor in prime decomposition
of 54
Hence total subarray remains which satisfies our
condition are 3.
Input: 2, 3, 5, 15, 7, 2
Output: 12
A Naive approach is to run a loop one inside another and generate all subarrays and then take product of all elements such that it’s prime decomposition doesn’t contain repeating elements. This approach would definitely be slow and would lead to overflow for large value of array element.
An efficient approach is to use prime factorization using Sieve of Eratosthenes.
Idea is to store the Smallest Prime Factor(SPF) for all values (till a maximum) using Sieve. We calculate prime factorization of the given number by dividing the given number recursively with its smallest prime factor till it becomes 1.
- Let ind[] be an array such that ind[i] stores the last index of prime divisor i in arr[], and ‘last_ind’ keeps track the last index of any divisor.
- Now traverse from left to right(0 to n-1). For particular element of array[i], find prime divisors using above approach, and initialize all the divisors with the latest index ‘i+1’.
- But before performing step 2, we update the variable of ‘last_ind’ with ind[] of every divisor of array[i].
- Since the variable ‘last_ind’ contain a last index(less than i) of any divisor of array[i], we can assure that all elements(last_ind+1, last_ind+2 … i) will not have any repeating prime factor of arr[i]. Hence our ans will be (i – last_ind +1)
- Perform above steps for remaining element of array[] and simultaneously update the answer for every index.
Implementation:
C++
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1000001;
int spf[MAXN];
void sieve()
{
for ( int i=1; i<MAXN; i++)
spf[i] = i;
for ( int i=4; i<MAXN; i+=2)
spf[i] = 2;
for ( int i=3; i*i<MAXN; i++)
{
if (spf[i] == i)
{
for ( int j=i*i; j<MAXN; j+=i)
if (spf[j]==j)
spf[j] = i;
}
}
}
int countSubArray( int arr[], int n)
{
int ind[MAXN];
memset (ind, -1, sizeof ind);
int count = 0;
int last_ind = 0;
for ( int i=0; i < n; ++i)
{
while (arr[i] > 1)
{
int div = spf[arr[i]];
last_ind = max(last_ind, ind[ div ]);
ind[ div ] = i + 1;
arr[i] /= div ;
}
count += i - last_ind + 1;
}
return count;
}
int main()
{
sieve();
int arr[] = {2, 3, 9};
int n = sizeof (arr) / sizeof (arr[0]);
cout << countSubArray(arr, n) << "\n" ;
int arr1[] = {2, 3, 5, 15, 7, 2};
int n1 = sizeof (arr1) / sizeof (arr1[0]);
cout << countSubArray(arr1, n1);
return 0;
}
|
Java
import java.io.*;
import java.util.*;
class GFG
{
public static int MAXN = 1000001 ;
public static int [] spf = new int [MAXN];
static void sieve()
{
for ( int i= 1 ; i<MAXN; i++)
spf[i] = i;
for ( int i= 4 ; i<MAXN; i+= 2 )
spf[i] = 2 ;
for ( int i= 3 ; i*i<MAXN; i++)
{
if (spf[i] == i)
{
for ( int j=i*i; j<MAXN; j+=i)
if (spf[j]==j)
spf[j] = i;
}
}
}
static int countSubArray( int arr[], int n)
{
int [] ind = new int [MAXN];
Arrays.fill(ind, - 1 );
int count = 0 ;
int last_ind = 0 ;
for ( int i= 0 ; i < n; ++i)
{
while (arr[i] > 1 )
{
int div = spf[arr[i]];
last_ind = Math.max(last_ind, ind[div]);
ind[div] = i + 1 ;
arr[i] /= div;
}
count += i - last_ind + 1 ;
}
return count;
}
public static void main (String[] args)
{
sieve();
int arr[] = { 2 , 3 , 9 };
int n = arr.length;
System.out.println(countSubArray(arr, n));
int arr1[] = { 2 , 3 , 5 , 15 , 7 , 2 };
int n1 = arr1.length;
System.out.println(countSubArray(arr1, n1));
}
}
|
Python3
from math import sqrt
MAXN = 1000001
spf = [ 0 for i in range (MAXN)]
def sieve():
for i in range ( 1 , MAXN, 1 ):
spf[i] = i
for i in range ( 4 , MAXN, 2 ):
spf[i] = 2
k = int (sqrt(MAXN))
for i in range ( 3 , k, 1 ):
if (spf[i] = = i):
for j in range (i * i, MAXN, i):
if (spf[j] = = j):
spf[j] = i
def countSubArray(arr, n):
ind = [ - 1 for i in range (MAXN)]
count = 0
last_ind = 0
for i in range ( 0 , n, 1 ):
while (arr[i] > 1 ):
div = spf[arr[i]]
last_ind = max (last_ind, ind[div])
ind[div] = i + 1
arr[i] = int (arr[i] / div)
count + = i - last_ind + 1
return count
if __name__ = = '__main__' :
sieve()
arr = [ 2 , 3 , 9 ]
n = len (arr)
print (countSubArray(arr, n))
arr1 = [ 2 , 3 , 5 , 15 , 7 , 2 ]
n1 = len (arr1)
print (countSubArray(arr1, n1))
|
C#
using System;
public class GFG {
public static int MAXN = 1000001;
public static int [] spf = new int [MAXN];
static void sieve()
{
for ( int i = 1; i < MAXN; i++)
spf[i] = i;
for ( int i = 4; i < MAXN; i += 2)
spf[i] = 2;
for ( int i = 3; i * i < MAXN; i++)
{
if (spf[i] == i)
{
for ( int j = i * i; j < MAXN; j += i)
if (spf[j] == j)
spf[j] = i;
}
}
}
static int countSubArray( int []arr, int n)
{
int [] ind = new int [MAXN];
for ( int i = 0; i < MAXN; i++)
{
ind[i] = -1;
}
int count = 0;
int last_ind = 0;
for ( int i = 0; i < n; ++i)
{
while (arr[i] > 1)
{
int div = spf[arr[i]];
last_ind = Math.Max(last_ind, ind[div]);
ind[div] = i + 1;
arr[i] /= div;
}
count += i - last_ind + 1;
}
return count;
}
public static void Main ()
{
sieve();
int []arr = {2, 3, 9};
int n = arr.Length;
Console.WriteLine(countSubArray(arr, n));
int []arr1 = {2, 3, 5, 15, 7, 2};
int n1 = arr1.Length;
Console.WriteLine(countSubArray(arr1, n1));
}
}
|
PHP
<?php
$MAXN = 1000001;
$spf = array_fill (0, $MAXN , NULL);
function sieve()
{
global $spf , $MAXN ;
for ( $i = 1; $i < $MAXN ; $i ++)
$spf [ $i ] = $i ;
for ( $i = 4; $i < $MAXN ; $i += 2)
$spf [ $i ] = 2;
for ( $i = 3; $i * $i < $MAXN ; $i ++)
{
if ( $spf [ $i ] == $i )
{
for ( $j = $i * $i ; $j < $MAXN ; $j += $i )
if ( $spf [ $j ] == $j )
$spf [ $j ] = $i ;
}
}
}
function countSubArray(& $arr , $n )
{
global $MAXN , $spf ;
$ind = array_fill (-1, $MAXN , NULL);
$count = 0;
$last_ind = 0;
for ( $i = 0; $i < $n ; ++ $i )
{
while ( $arr [ $i ] > 1)
{
$div = $spf [ $arr [ $i ]];
$last_ind = max( $last_ind , $ind [ $div ]);
$ind [ $div ] = $i + 1;
if ( $div != 0)
$arr [ $i ] /= $div ;
}
$count += $i - $last_ind + 1;
}
return $count ;
}
sieve();
$arr = array (2, 3, 9);
$n = sizeof( $arr );
echo countSubArray( $arr , $n ) . "\n" ;
$arr1 = array (2, 3, 5, 15, 7, 2);
$n1 = sizeof( $arr1 );
echo countSubArray( $arr1 , $n1 );
?>
|
Javascript
<script>
let MAXN = 1000001;
let spf = new Array(MAXN);
function sieve()
{
for (let i = 1; i < MAXN; i++)
spf[i] = i;
for (let i = 4; i < MAXN; i += 2)
spf[i] = 2;
for (let i = 3; i * i < MAXN; i++)
{
if (spf[i] == i)
{
for (let j = i * i; j < MAXN; j += i)
if (spf[j] == j)
spf[j] = i;
}
}
}
function countSubArray(arr,n)
{
let ind = new Array(MAXN);
for (let i = 0; i < ind.length; i++)
{
ind[i] = -1;
}
let count = 0;
let last_ind = 0;
for (let i = 0; i < n; ++i)
{
while (arr[i] > 1)
{
let div = spf[arr[i]];
last_ind = Math.max(last_ind, ind[div]);
ind[div] = i + 1;
arr[i] /= div;
}
count += i - last_ind + 1;
}
return count;
}
sieve();
let arr = [2, 3, 9];
let n = arr.length;
document.write(countSubArray(arr, n)+ "<br>" );
let arr1 = [2, 3, 5, 15, 7, 2];
let n1 = arr1.length;
document.write(countSubArray(arr1, n1));
</script>
|
Time complexity: O(MAX*log(log(MAX) + nlog(n))
Auxiliary space: O(MAX)
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
19 Sep, 2023
Like Article
Save Article