Skip to content
Related Articles

Related Articles

Count subarrays made up of single-digit integers only
  • Last Updated : 31 Mar, 2021

Given an array arr[] consisting of N positive integers, the task is to count subarrays consisting of single-digit elements only.

Examples:

Input: arr[] = {0, 1, 14, 2, 5}
Output: 6
Explanation: All subarrays made of only single digit numbers are {{0}, {1}, {2}, {5}, {0, 1}, {2, 5}}. Therefore, the total count of subarrays is 6.

Input: arr[] ={12, 5, 14, 17}
Output: 1
Explanation: All subarrays made of only single digit numbers are {5}.
Therefore, the total count of subarrays is 1.

 

Naive Approach: The simplest approach is to traverse the array and generate all possible subarrays. For each subarray, check if all integers in it are single-digit integers or not. 



Time Complexity: O(N3)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is to find the size of each block of contiguous single-digit integers and increment the count by total subarrays of that length. Follow the steps below to solve the problem:

  • Initialize a variable, say res = 0 and c = 0, to store the total count of subarrays and the total count of single-digit integers in a subarray.
  • Traverse the array and perform the following operations:
    • If arr[i] < 10, increment the count of c by one and count of res by c.
    • Otherwise, assign c = 0.
  • Finally, print the total count of single-digit integer subarrays.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count of subarrays made
// up of single digit integers only
int singleDigitSubarrayCount(int arr[],
                             int N)
{
    // Stores count of subarrays
    int res = 0;
 
    // Stores the count of consecutive
    // single digit numbers in the array
    int count = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        if (arr[i] <= 9) {
 
            // Increment size of block by 1
            count++;
 
            // Increment res by count
            res += count;
        }
 
        else {
 
            // Assign count = 0
            count = 0;
        }
    }
 
    cout << res;
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 0, 1, 14, 2, 5 };
 
    // Size of the array
    int N = sizeof(arr) / sizeof(arr[0]);
    singleDigitSubarrayCount(arr, N);
 
    return 0;
}

Java




// Java program for the above approach
class GFG
{
 
// Function to count of subarrays made
// up of single digit integers only
static void singleDigitSubarrayCount(int arr[],
                             int N)
{
   
    // Stores count of subarrays
    int res = 0;
 
    // Stores the count of consecutive
    // single digit numbers in the array
    int count = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++)
    {
        if (arr[i] <= 9)
        {
 
            // Increment size of block by 1
            count++;
 
            // Increment res by count
            res += count;
        }
 
        else
        {
 
            // Assign count = 0
            count = 0;
        }
    }
    System.out.print(res);
}
 
// Driver Code
public static void main(String[] args)
{
   
    // Given array
    int arr[] = { 0, 1, 14, 2, 5 };
 
    // Size of the array
    int N = arr.length;
    singleDigitSubarrayCount(arr, N);
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program for the above approach
 
# Function to count of subarrays made
# up of single digit integers only
def singleDigitSubarrayCount(arr, N):
     
    # Stores count of subarrays
    res = 0
 
    # Stores the count of consecutive
    # single digit numbers in the array
    count = 0
 
    # Traverse the array
    for i in range(N):
        if (arr[i] <= 9):
 
            # Increment size of block by 1
            count += 1
 
            # Increment res by count
            res += count
        else:
            # Assign count = 0
            count = 0
    print (res)
 
# Driver Code
if __name__ == '__main__':
   
    # Given array
    arr = [0, 1, 14, 2, 5]
 
    # Size of the array
    N = len(arr)
    singleDigitSubarrayCount(arr, N)
 
    # This code is contributed by mohit kumar 29.

C#




// C# program for the above approach
using System;
class GFG{
 
// Function to count of subarrays made
// up of single digit integers only
static void singleDigitSubarrayCount(int[] arr,
                             int N)
{
   
    // Stores count of subarrays
    int res = 0;
 
    // Stores the count of consecutive
    // single digit numbers in the array
    int count = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++)
    {
        if (arr[i] <= 9)
        {
 
            // Increment size of block by 1
            count++;
 
            // Increment res by count
            res += count;
        }
        else
        {
 
            // Assign count = 0
            count = 0;
        }
    }
    Console.Write(res);
}
 
// Driver Code
public static void Main(string[] args)
{
    // Given array
    int[] arr = { 0, 1, 14, 2, 5 };
 
    // Size of the array
    int N = arr.Length;
    singleDigitSubarrayCount(arr, N);
}
}
 
// This code is contributed by sanjoy_62.

Javascript




<script>
 
// Javascript program for the above approach
 
// Function to count of subarrays made
// up of single digit integers only
function singleDigitSubarrayCount(arr, N)
{
     
    // Stores count of subarrays
    let res = 0;
 
    // Stores the count of consecutive
    // single digit numbers in the array
    let count = 0;
 
    // Traverse the array
    for(let i = 0; i < N; i++)
    {
        if (arr[i] <= 9)
        {
             
            // Increment size of block by 1
            count++;
 
            // Increment res by count
            res += count;
        }
        else
        {
             
            // Assign count = 0
            count = 0;
        }
    }
    document.write(res);
}
 
// Driver Code
 
// Given array
let arr = [ 0, 1, 14, 2, 5 ];
 
// Size of the array
let N = arr.length;
 
singleDigitSubarrayCount(arr, N);
 
// This code is contributed by Manoj.
 
</script>
Output: 
6

 

Time Complexity: O(N)
Auxiliary Space: O(1) 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :