Count rotations which are divisible by 10

Given a number N, the task is to count all the rotations of the given number which are divisible by 10.

Examples:

Input: N = 10203
Output: 2
Explanation:
There are 5 rotations possible for the given number. They are: 02031, 20310, 03102, 31020, 10203
Out of these rotations, only 20310 and 31020 are divisible by 10. So 2 is the output.

Input: N = 135
Output: 0

Naive Approach: The naive approach for this problem is to form all the possible rotations. It is known that for a number of size K, the number of possible rotations for this number N is K. Therefore, find all the rotations and for every rotation, check if the number is divisible by 10 or not. The time complexity for this approach is quadratic.



Efficient Approach: The efficient approach lies behind the concept that in order to check whether a number is divisible by 10 or not, we simply check if the last digit is 0. So, the idea is to simply iterate over the given number and find the count of 0’s. If the count of 0’s is F, then clearly, F out of K rotations will have 0 at the end of the given number N.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to find the
// count of rotations which are
// divisible by 10
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the count of
// all the rotations which are
// divisible by 10.
int countRotation(int n)
{
    int count = 0;
  
    // Loop to iterate through the
    // number
    do {
        int digit = n % 10;
  
        // If the last digit is 0,
        // then increment the count
        if (digit == 0)
            count++;
        n = n / 10;
    } while (n != 0);
  
    return count;
}
  
// Driver code
int main()
{
    int n = 10203;
    cout << countRotation(n);
}

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// CSharp implementation to find the
// count of rotations which are
// divisible by 10
  
using System;
class Solution {
  
    // Function to return the count
    // of all rotations which are
    // divisible by 10.
    static int countRotation(int n)
    {
        int count = 0;
  
        // Loop to iterate through the
        // number
        do {
            int digit = n % 10;
  
            // If the last digit is 0,
            // then increment the count
            if (digit % 2 == 0)
                count++;
            n = n / 10;
        } while (n != 0);
  
        return count;
    }
  
    // Driver code
    public static void Main()
    {
        int n = 10203;
        Console.Write(countRotation(n));
    }
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find the
// count of rotations which are
// divisible by 10
  
class GFG {
  
    // Function to return the count
    // of all rotations which are
    // divisible by 10.
    static int countRotation(int n)
    {
        int count = 0;
  
        // Loop to iterate through the
        // number
        do {
            int digit = n % 10;
  
            // If the last digit is 0,
            // then increment the count
            if (digit == 0)
                count++;
            n = n / 10;
        } while (n != 0);
  
        return count;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int n = 10203;
  
        System.out.println(countRotation(n));
    }
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to find the 
# count of rotations which are 
# divisible by 10
  
# Function to return the count of 
# all rotations which are divisible 
# by 10.
def countRotation(n):
    count = 0;
  
    # Loop to iterate through the
    # number
    while n > 0:
        digit = n % 10
  
        # If the last digit is 0,
        # then increment the count
        if(digit % 2 == 0):
            count = count + 1
        n = int(n / 10)
      
    return count;    
    
# Driver code  
if __name__ == "__main__"
    
    n = 10203;  
    print(countRotation(n));  

chevron_right


Output:

2

Time Complexity: O(N), where N is the length of the number.

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.