Count prime numbers in range [L, R] whose single digit sum is also prime
Given two integers L and R. The task is to count the prime numbers in the range [L, R], whose single sum is also a prime number.
A single sum is obtained by adding the digits of a number until a single digit is left.
Examples
Input: L = 5, R = 20
Output: 3
Explanation: Prime numbers in the range L = 5 to R = 20 are {5, 7, 11, 13, 17, 19}
Their “single sum” of digits is {5, 7, 2, 4, 8, 1}.
Only {5, 7, 2} are prime. Hence the answer is 3.Input: L = 1, R = 10
Output: 4
Explanation: Prime numbers in the range L = 1 to R = 10 are {2, 3, 5, 7}.
Their “single sum” of digits is {2, 3, 5, 7}.
Since all the numbers are prime, hence the answer is 4.
Approach: The naive approach is to iterate for each number in the range [L, R] and check if the number is prime or not. If the number is prime, find the single sum of its digits and again check whether the single sum is prime or not. If the single sum is prime, then increment the counter and print the current element in the range [L, R].
Below is the implementation of the above approach.
C++14
// C++ program for above approach #include <bits/stdc++.h> using namespace std; // Function to check whether number // is prime or not bool isPrime( int n) { // Corner case if (n <= 1) return false ; // Check from 2 to square root of n for ( int i = 2; i <= sqrt (n); i++) if (n % i == 0) return false ; return true ; } // Function to find single digit sum int SingleDigitSum( int & n) { if (n <= 9) return n; return (n % 9 == 0) ? 9 : n % 9; } // Function to find single digit primes int countSingleDigitPrimes( int l, int r) { int count = 0, i; for (i = l; i <= r; i++) { if (isPrime(i) && isPrime(SingleDigitSum(i))) { count++; } } return count; } // Driver Code int main() { // Input range int L = 1, R = 10; // Function Call cout << countSingleDigitPrimes(L, R); return 0; } |
Java
// Java program to implement // the above approach class GFG { // Function to check whether number // is prime or not static boolean isPrime( int n) { // Corner case if (n <= 1 ) return false ; // Check from 2 to square root of n for ( int i = 2 ; i <= Math.sqrt(n); i++) if (n % i == 0 ) return false ; return true ; } // Function to find single digit sum static int SingleDigitSum( int n) { if (n <= 9 ) return n; return (n % 9 == 0 ) ? 9 : n % 9 ; } // Function to find single digit primes static int countSingleDigitPrimes( int l, int r) { int count = 0 , i; for (i = l; i <= r; i++) { if (isPrime(i) && isPrime(SingleDigitSum(i))) { count++; } } return count; } // Driver Code public static void main(String args[]) { // Input range int L = 1 , R = 10 ; // Function Call System.out.println(countSingleDigitPrimes(L, R)); } } // This code is contributed by gfgking |
Python3
# Python program for above approach import math # Function to check whether number # is prime or not def isPrime(n): # Corner case if n < = 1 : return False # Check from 2 to square root of n for i in range ( 2 , math.floor(math.sqrt(n)) + 1 ): if n % i = = 0 : return False return True # Function to find single digit sum def SingleDigitSum(n): if n < = 9 : return n return 9 if (n % 9 = = 0 ) else n % 9 # Function to find single digit primes def countSingleDigitPrimes(l, r): count = 0 i = None for i in range (l, r + 1 ): if isPrime(i) and isPrime(SingleDigitSum(i)): count + = 1 return count # Driver Code # Input range L = 1 R = 10 # Function Call print (countSingleDigitPrimes(L, R)) # This code is contributed by gfgking |
C#
// C# program to implement // the above approach using System; class GFG { // Function to check whether number // is prime or not static bool isPrime( int n) { // Corner case if (n <= 1) return false ; // Check from 2 to square root of n for ( int i = 2; i <= Math.Sqrt(n); i++) if (n % i == 0) return false ; return true ; } // Function to find single digit sum static int SingleDigitSum( int n) { if (n <= 9) return n; return (n % 9 == 0) ? 9 : n % 9; } // Function to find single digit primes static int countSingleDigitPrimes( int l, int r) { int count = 0, i; for (i = l; i <= r; i++) { if (isPrime(i) && isPrime(SingleDigitSum(i))) { count++; } } return count; } // Driver Code public static void Main() { // Input range int L = 1, R = 10; // Function Call Console.Write(countSingleDigitPrimes(L, R)); } } // This code is contributed by Samim Hossain Mondal. |
Javascript
<script> // JavaScript program for above approach // Function to check whether number // is prime or not const isPrime = (n) => { // Corner case if (n <= 1) return false ; // Check from 2 to square root of n for (let i = 2; i <= Math.sqrt(n); i++) if (n % i == 0) return false ; return true ; } // Function to find single digit sum const SingleDigitSum = (n) => { if (n <= 9) return n; return (n % 9 == 0) ? 9 : n % 9; } // Function to find single digit primes const countSingleDigitPrimes = (l, r) => { let count = 0, i; for (i = l; i <= r; i++) { if (isPrime(i) && isPrime(SingleDigitSum(i))) { count++; } } return count; } // Driver Code // Input range let L = 1, R = 10; // Function Call document.write(countSingleDigitPrimes(L, R)); // This code is contributed by rakeshsahni </script> |
4
Time Complexity: O((R – L)*N^(1/2)) where N is the prime number in the range [L, R].
Auxiliary Space: O(1)