# Count pairs from two sorted arrays whose sum is equal to a given value x

Given two sorted arrays of size m and n of distinct elements. Given a value x. The problem is to count all pairs from both arrays whose sum is equal to x.
Note: The pair has an element from each array.

Examples :

```Input : arr1[] = {1, 3, 5, 7}
arr2[] = {2, 3, 5, 8}
x = 10

Output : 2
The pairs are:
(5, 5) and (7, 3)

Input : arr1[] = {1, 2, 3, 4, 5, 7, 11}
arr2[] = {2, 3, 4, 5, 6, 8, 12}
x = 9

Output : 5
```

## Recommended: Please solve it on “PRACTICE ” first, before moving on to the solution.

Method 1 (Naive Approach): Using two loops pick elements from both the arrays and check whether the sum of the pair is equal to x or not.

## C++

 `// C++ implementation to count  ` `// pairs from both sorted arrays  ` `// whose sum is equal to a given  ` `// value ` `#include ` `using` `namespace` `std; ` ` `  `// function to count all pairs ` `// from both the sorted arrays  ` `// whose sum is equal to a given ` `// value ` `int` `countPairs(``int` `arr1[], ``int` `arr2[],  ` `               ``int` `m, ``int` `n, ``int` `x) ` `{ ` `    ``int` `count = 0; ` `     `  `    ``// generating pairs from  ` `    ``// both the arrays ` `    ``for` `(``int` `i = 0; i < m; i++) ` `        ``for` `(``int` `j = 0; j < n; j++) ` ` `  `            ``// if sum of pair is equal  ` `            ``// to 'x' increment count  ` `            ``if` `((arr1[i] + arr2[j]) == x)  ` `                ``count++; ` `     `  `    ``// required count of pairs      ` `    ``return` `count; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `arr1[] = {1, 3, 5, 7}; ` `    ``int` `arr2[] = {2, 3, 5, 8}; ` `    ``int` `m = ``sizeof``(arr1) / ``sizeof``(arr1); ` `    ``int` `n = ``sizeof``(arr2) / ``sizeof``(arr2); ` `    ``int` `x = 10; ` `    ``cout << ``"Count = "` `         ``<< countPairs(arr1, arr2, m, n, x); ` `    ``return` `0;      ` `}  `

## Java

 `// Java implementation to count pairs from ` `// both sorted arrays whose sum is equal ` `// to a given value ` `import` `java.io.*; ` ` `  `class` `GFG { ` `         `  `    ``// function to count all pairs ` `    ``// from both the sorted arrays  ` `    ``// whose sum is equal to a given ` `    ``// value ` `    ``static` `int` `countPairs(``int` `[]arr1,  ` `             ``int` `[]arr2, ``int` `m, ``int` `n, ``int` `x) ` `    ``{ ` `        ``int` `count = ``0``; ` `         `  `        ``// generating pairs from  ` `        ``// both the arrays ` `        ``for` `(``int` `i = ``0``; i < m; i++) ` `            ``for` `(``int` `j = ``0``; j < n; j++) ` `     `  `                ``// if sum of pair is equal  ` `                ``// to 'x' increment count  ` `                ``if` `((arr1[i] + arr2[j]) == x)  ` `                    ``count++; ` `         `  `        ``// required count of pairs  ` `        ``return` `count; ` `    ``} ` `     `  `    ``// Driver Code ` ` `  `    ``public` `static` `void` `main (String[] args) ` `    ``{ ` `        ``int` `arr1[] = {``1``, ``3``, ``5``, ``7``}; ` `        ``int` `arr2[] = {``2``, ``3``, ``5``, ``8``}; ` `        ``int` `m = arr1.length; ` `        ``int` `n = arr2.length; ` `        ``int` `x = ``10``; ` `         `  `        ``System.out.println( ``"Count = "` `        ``+ countPairs(arr1, arr2, m, n, x)); ` `    ``} ` `} ` ` `  `// This code is contributed by anuj_67. `

## Python3

 `# python implementation to count ` `# pairs from both sorted arrays  ` `# whose sum is equal to a given  ` `# value ` ` `  `# function to count all pairs from ` `# both the sorted arrays whose sum ` `# is equal to a given value ` `def` `countPairs(arr1, arr2, m, n, x): ` `    ``count ``=` `0` ` `  `    ``# generating pairs from both ` `    ``# the arrays ` `    ``for` `i ``in` `range``(m): ` `        ``for` `j ``in` `range``(n): ` ` `  `            ``# if sum of pair is equal ` `            ``# to 'x' increment count ` `            ``if` `arr1[i] ``+` `arr2[j] ``=``=` `x: ` `                ``count ``=` `count ``+` `1` ` `  `    ``# required count of pairs ` `    ``return` `count ` ` `  `# Driver Program ` `arr1 ``=` `[``1``, ``3``, ``5``, ``7``] ` `arr2 ``=` `[``2``, ``3``, ``5``, ``8``] ` `m ``=` `len``(arr1) ` `n ``=` `len``(arr2) ` `x ``=` `10` `print``(``"Count = "``,  ` `        ``countPairs(arr1, arr2, m, n, x)) ` ` `  `# This code is contributed by Shrikant13. `

## C#

 `// C# implementation to count pairs from ` `// both sorted arrays whose sum is equal ` `// to a given value ` `using` `System; ` ` `  `class` `GFG { ` `         `  `    ``// function to count all pairs ` `    ``// from both the sorted arrays  ` `    ``// whose sum is equal to a given ` `    ``// value ` `    ``static` `int` `countPairs(``int` `[]arr1,  ` `            ``int` `[]arr2, ``int` `m, ``int` `n, ``int` `x) ` `    ``{ ` `        ``int` `count = 0; ` `         `  `        ``// generating pairs from  ` `        ``// both the arrays ` `        ``for` `(``int` `i = 0; i < m; i++) ` `            ``for` `(``int` `j = 0; j < n; j++) ` `     `  `                ``// if sum of pair is equal  ` `                ``// to 'x' increment count  ` `                ``if` `((arr1[i] + arr2[j]) == x)  ` `                    ``count++; ` `         `  `        ``// required count of pairs  ` `        ``return` `count; ` `    ``} ` `     `  `    ``// Driver Code ` ` `  `    ``public` `static` `void` `Main () ` `    ``{ ` `        ``int` `[]arr1 = {1, 3, 5, 7}; ` `        ``int` `[]arr2 = {2, 3, 5, 8}; ` `        ``int` `m = arr1.Length; ` `        ``int` `n = arr2.Length; ` `        ``int` `x = 10; ` `         `  `        ``Console.WriteLine( ``"Count = "` `        ``+ countPairs(arr1, arr2, m, n, x)); ` `    ``} ` `} ` ` `  `// This code is contributed by anuj_67. `

## PHP

 ` `

Output :

```Count = 2
```

Time Complexity : O(mn)
Auxiliary space : O(1)

Method 2 (Binary Search): For each element arr1[i], where 1 <= i <= m, search the value (x – arr1[i]) in arr2[]. If search is successful, increment the count.

## C++

 `// C++ implementation to count  ` `// pairs from both sorted arrays  ` `// whose sum is equal to a given ` `// value ` `#include ` `using` `namespace` `std; ` ` `  `// function to search 'value'  ` `// in the given array 'arr[]'  ` `// it uses binary search technique  ` `// as  'arr[]' is sorted  ` `bool` `isPresent(``int` `arr[], ``int` `low, ` `               ``int` `high, ``int` `value) ` `{ ` `    ``while` `(low <= high) ` `    ``{ ` `        ``int` `mid = (low + high) / 2; ` `         `  `        ``// value found ` `        ``if` `(arr[mid] == value) ` `            ``return` `true``;      ` `             `  `        ``else` `if` `(arr[mid] > value)  ` `            ``high = mid - 1; ` `        ``else` `            ``low = mid + 1;  ` `    ``} ` `     `  `    ``// value not found ` `    ``return` `false``; ` `} ` ` `  `// function to count all pairs  ` `// from both the sorted arrays  ` `// whose sum is equal to a given ` `// value ` `int` `countPairs(``int` `arr1[], ``int` `arr2[], ` `               ``int` `m, ``int` `n, ``int` `x) ` `{ ` `    ``int` `count = 0;      ` `    ``for` `(``int` `i = 0; i < m; i++) ` `    ``{ ` `        ``// for each arr1[i] ` `        ``int` `value = x - arr1[i]; ` `         `  `        ``// check if the 'value' ` `        ``// is present in 'arr2[]' ` `        ``if` `(isPresent(arr2, 0, n - 1, value)) ` `            ``count++; ` `    ``} ` `     `  `    ``// required count of pairs      ` `    ``return` `count; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `arr1[] = {1, 3, 5, 7}; ` `    ``int` `arr2[] = {2, 3, 5, 8}; ` `    ``int` `m = ``sizeof``(arr1) / ``sizeof``(arr1); ` `    ``int` `n = ``sizeof``(arr2) / ``sizeof``(arr2); ` `    ``int` `x = 10; ` `    ``cout << ``"Count = "` `         ``<< countPairs(arr1, arr2, m, n, x); ` `    ``return` `0;      ` `} `

## Java

 `// Java implementation to count  ` `// pairs from both sorted arrays  ` `// whose sum is equal to a given ` `// value ` `import` `java.io.*; ` `class` `GFG { ` ` `  `// function to search 'value'  ` `// in the given array 'arr[]'  ` `// it uses binary search technique  ` `// as 'arr[]' is sorted  ` `static` `boolean` `isPresent(``int` `arr[], ``int` `low, ` `                         ``int` `high, ``int` `value) ` `{ ` `    ``while` `(low <= high) ` `    ``{ ` `        ``int` `mid = (low + high) / ``2``; ` `         `  `        ``// value found ` `        ``if` `(arr[mid] == value) ` `            ``return` `true``;      ` `             `  `        ``else` `if` `(arr[mid] > value)  ` `            ``high = mid - ``1``; ` `        ``else` `            ``low = mid + ``1``;  ` `    ``} ` `     `  `    ``// value not found ` `    ``return` `false``; ` `} ` ` `  `// function to count all pairs  ` `// from both the sorted arrays  ` `// whose sum is equal to a given ` `// value ` `static` `int` `countPairs(``int` `arr1[], ``int` `arr2[], ` `                      ``int` `m, ``int` `n, ``int` `x) ` `{ ` `    ``int` `count = ``0``;  ` `    ``for` `(``int` `i = ``0``; i < m; i++) ` `    ``{ ` `         `  `        ``// for each arr1[i] ` `        ``int` `value = x - arr1[i]; ` `         `  `        ``// check if the 'value' ` `        ``// is present in 'arr2[]' ` `        ``if` `(isPresent(arr2, ``0``, n - ``1``, value)) ` `            ``count++; ` `    ``} ` `     `  `    ``// required count of pairs  ` `    ``return` `count; ` `} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{ ` `        ``int` `arr1[] = {``1``, ``3``, ``5``, ``7``}; ` `        ``int` `arr2[] = {``2``, ``3``, ``5``, ``8``}; ` `        ``int` `m = arr1.length; ` `        ``int` `n = arr2.length; ` `        ``int` `x = ``10``; ` `        ``System.out.println(``"Count = "` `              ``+ countPairs(arr1, arr2, m, n, x)); ` `    ``} ` `} ` ` `  `// This code is contributed by anuj_67. `

## Python 3

 `# Python 3 implementation to count  ` `# pairs from both sorted arrays  ` `# whose sum is equal to a given ` `# value ` ` `  `# function to search 'value'  ` `# in the given array 'arr[]'  ` `# it uses binary search technique  ` `# as 'arr[]' is sorted  ` `def` `isPresent(arr, low, high, value): ` ` `  `    ``while` `(low <``=` `high): ` `     `  `        ``mid ``=` `(low ``+` `high) ``/``/` `2` `         `  `        ``# value found ` `        ``if` `(arr[mid] ``=``=` `value): ` `            ``return` `True` `             `  `        ``elif` `(arr[mid] > value) : ` `            ``high ``=` `mid ``-` `1` `        ``else``: ` `            ``low ``=` `mid ``+` `1` `     `  `    ``# value not found ` `    ``return` `False` ` `  `# function to count all pairs  ` `# from both the sorted arrays  ` `# whose sum is equal to a given ` `# value ` `def` `countPairs(arr1, arr2, m, n, x): ` `    ``count ``=` `0` `    ``for` `i ``in` `range``(m): ` `        ``# for each arr1[i] ` `        ``value ``=` `x ``-` `arr1[i] ` `         `  `        ``# check if the 'value' ` `        ``# is present in 'arr2[]' ` `        ``if` `(isPresent(arr2, ``0``, n ``-` `1``, value)): ` `            ``count ``+``=` `1` `     `  `    ``# required count of pairs      ` `    ``return` `count ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``: ` `    ``arr1 ``=` `[``1``, ``3``, ``5``, ``7``] ` `    ``arr2 ``=` `[``2``, ``3``, ``5``, ``8``] ` `    ``m ``=` `len``(arr1) ` `    ``n ``=` `len``(arr2) ` `    ``x ``=` `10` `    ``print``(``"Count = "``, ` `           ``countPairs(arr1, arr2, m, n, x)) ` ` `  `# This code is contributed  ` `# by ChitraNayal `

## C#

 `// C# implementation to count pairs from both  ` `// sorted arrays whose sum is equal to a given ` `// value ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// function to search 'value' in the given ` `    ``// array 'arr[]' it uses binary search  ` `    ``// technique as 'arr[]' is sorted  ` `    ``static` `bool` `isPresent(``int` `[]arr, ``int` `low, ` `                         ``int` `high, ``int` `value) ` `    ``{ ` `        ``while` `(low <= high) ` `        ``{ ` `            ``int` `mid = (low + high) / 2; ` `             `  `            ``// value found ` `            ``if` `(arr[mid] == value) ` `                ``return` `true``;      ` `                 `  `            ``else` `if` `(arr[mid] > value)  ` `                ``high = mid - 1; ` `            ``else` `                ``low = mid + 1;  ` `        ``} ` `         `  `        ``// value not found ` `        ``return` `false``; ` `    ``} ` `     `  `    ``// function to count all pairs  ` `    ``// from both the sorted arrays  ` `    ``// whose sum is equal to a given ` `    ``// value ` `    ``static` `int` `countPairs(``int` `[]arr1, ``int` `[]arr2, ` `                             ``int` `m, ``int` `n, ``int` `x) ` `    ``{ ` `        ``int` `count = 0;  ` `         `  `        ``for` `(``int` `i = 0; i < m; i++) ` `        ``{ ` `             `  `            ``// for each arr1[i] ` `            ``int` `value = x - arr1[i]; ` `             `  `            ``// check if the 'value' ` `            ``// is present in 'arr2[]' ` `            ``if` `(isPresent(arr2, 0, n - 1, value)) ` `                ``count++; ` `        ``} ` `         `  `        ``// required count of pairs  ` `        ``return` `count; ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `Main ()  ` `    ``{ ` `        ``int` `[]arr1 = {1, 3, 5, 7}; ` `        ``int` `[]arr2 = {2, 3, 5, 8}; ` `        ``int` `m = arr1.Length; ` `        ``int` `n = arr2.Length; ` `        ``int` `x = 10; ` `        ``Console.WriteLine(``"Count = "` `            ``+ countPairs(arr1, arr2, m, n, x)); ` `    ``} ` `} ` ` `  `// This code is contributed by anuj_67. `

## PHP

 ` ``\$value``)  ` `            ``\$high` `= ``\$mid` `- 1; ` `        ``else` `            ``\$low` `= ``\$mid` `+ 1;  ` `    ``} ` `     `  `    ``// value not found ` `    ``return` `false; ` `} ` ` `  `// function to count all pairs  ` `// from both the sorted arrays  ` `// whose sum is equal to a given ` `// value ` `function` `countPairs(``\$arr1``, ``\$arr2``, ` `                    ``\$m``, ``\$n``, ``\$x``) ` `{ ` `    ``\$count` `= 0;  ` `    ``for` `(``\$i` `= 0; ``\$i` `< ``\$m``; ``\$i``++) ` `    ``{ ` `         `  `        ``// for each arr1[i] ` `        ``\$value` `= ``\$x` `- ``\$arr1``[``\$i``]; ` `         `  `        ``// check if the 'value' ` `        ``// is present in 'arr2[]' ` `        ``if` `(isPresent(``\$arr2``, 0,  ` `                      ``\$n` `- 1, ``\$value``)) ` `            ``\$count``++; ` `    ``} ` `     `  `    ``// required count of pairs  ` `    ``return` `\$count``; ` `} ` ` `  `    ``// Driver Code ` `    ``\$arr1` `= ``array``(1, 3, 5, 7); ` `    ``\$arr2` `= ``array``(2, 3, 5, 8); ` `    ``\$m` `= ``count``(``\$arr1``); ` `    ``\$n` `= ``count``(``\$arr2``); ` `    ``\$x` `= 10; ` `    ``echo` `"Count = "` `        ``, countPairs(``\$arr1``, ``\$arr2``, ``\$m``, ``\$n``, ``\$x``); ` ` `  `// This code is contributed by anuj_67. ` `?> `

Output :

```Count = 2
```

Time Complexity : O(mlogn), searching should be applied on the array which is of greater size so as to reduce the time complexity.
Auxiliary space : O(1)

Method 3 (Hashing): Hash table is implemented using unordered_set in C++. We store all first array elements in hash table. For elements of second array, we subtract every element from x and check the result in hash table. If result is present, we increment the count.

## C++

 `// C++ implementation to count  ` `// pairs from both sorted arrays  ` `// whose sum is equal to a given  ` `// value ` `#include ` `using` `namespace` `std; ` ` `  `// function to count all pairs  ` `// from both the sorted arrays  ` `// whose sum is equal to a given ` `// value ` `int` `countPairs(``int` `arr1[], ``int` `arr2[],  ` `               ``int` `m, ``int` `n, ``int` `x) ` `{ ` `    ``int` `count = 0; ` `     `  `    ``unordered_set<``int``> us; ` `     `  `    ``// insert all the elements  ` `    ``// of 1st array in the hash ` `    ``// table(unordered_set 'us') ` `    ``for` `(``int` `i = 0; i < m; i++) ` `        ``us.insert(arr1[i]); ` `     `  `    ``// for each element of 'arr2[]  ` `    ``for` `(``int` `j = 0; j < n; j++)  ` ` `  `        ``// find (x - arr2[j]) in 'us' ` `        ``if` `(us.find(x - arr2[j]) != us.end()) ` `            ``count++; ` `     `  `    ``// required count of pairs      ` `    ``return` `count; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `arr1[] = {1, 3, 5, 7}; ` `    ``int` `arr2[] = {2, 3, 5, 8}; ` `    ``int` `m = ``sizeof``(arr1) / ``sizeof``(arr1); ` `    ``int` `n = ``sizeof``(arr2) / ``sizeof``(arr2); ` `    ``int` `x = 10; ` `    ``cout << ``"Count = "` `         ``<< countPairs(arr1, arr2, m, n, x); ` `    ``return` `0;      ` `} `

## Java

 `import` `java.util.*; ` `// Java implementation to count  ` `// pairs from both sorted arrays  ` `// whose sum is equal to a given  ` `// value ` ` `  `class` `GFG ` `{ ` ` `  `// function to count all pairs  ` `// from both the sorted arrays  ` `// whose sum is equal to a given  ` `// value  ` `static` `int` `countPairs(``int` `arr1[], ``int` `arr2[],  ` `            ``int` `m, ``int` `n, ``int` `x)  ` `{  ` `    ``int` `count = ``0``;  ` `     `  `    ``HashSet us = ``new` `HashSet(); ` `     `  `    ``// insert all the elements  ` `    ``// of 1st array in the hash  ` `    ``// table(unordered_set 'us')  ` `    ``for` `(``int` `i = ``0``; i < m; i++)  ` `        ``us.add(arr1[i]);  ` `     `  `    ``// for each element of 'arr2[]  ` `    ``for` `(``int` `j = ``0``; j < n; j++)  ` ` `  `        ``// find (x - arr2[j]) in 'us'  ` `        ``if` `(us.contains(x - arr2[j]))  ` `            ``count++;  ` `     `  `    ``// required count of pairs  ` `    ``return` `count;  ` `}  ` ` `  `// Driver Code  ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `arr1[] = {``1``, ``3``, ``5``, ``7``};  ` `    ``int` `arr2[] = {``2``, ``3``, ``5``, ``8``};  ` `    ``int` `m = arr1.length;  ` `    ``int` `n = arr2.length;  ` `    ``int` `x = ``10``;  ` `    ``System.out.print(``"Count = "` `        ``+ countPairs(arr1, arr2, m, n, x)); ` `} ` `} ` ` `  `// This code has been contributed by 29AjayKumar `

## Python3

 `# Python3 implementation to count  ` `# pairs from both sorted arrays  ` `# whose sum is equal to a given value  ` ` `  `# function to count all pairs from   ` `# both the sorted arrays whose sum ` `# is equal to a given value  ` `def` `countPairs(arr1, arr2, m, n, x): ` `    ``count ``=` `0` `    ``us ``=` `set``() ` ` `  `    ``# insert all the elements  ` `    ``# of 1st array in the hash  ` `    ``# table(unordered_set 'us')  ` `    ``for` `i ``in` `range``(m): ` `        ``us.add(arr1[i]) ` ` `  `    ``# or each element of 'arr2[]  ` `    ``for` `j ``in` `range``(n): ` ` `  `        ``# find (x - arr2[j]) in 'us'  ` `        ``if` `x ``-` `arr2[j] ``in` `us: ` `            ``count ``+``=` `1` ` `  `    ``# required count of pairs ` `    ``return` `count ` ` `  `# Driver code ` `arr1 ``=` `[``1``, ``3``, ``5``, ``7``] ` `arr2 ``=` `[``2``, ``3``, ``5``, ``8``] ` `m ``=` `len``(arr1) ` `n ``=` `len``(arr2) ` `x ``=` `10` `print``(``"Count ="``,  ` `       ``countPairs(arr1, arr2, m, n, x)) ` ` `  `# This code is contributed by Shrikant13 `

## C#

 `// C# implementation to count  ` `// pairs from both sorted arrays  ` `// whose sum is equal to a given  ` `// value ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG ` `{ ` ` `  `// function to count all pairs  ` `// from both the sorted arrays  ` `// whose sum is equal to a given  ` `// value  ` `static` `int` `countPairs(``int` `[]arr1, ``int` `[]arr2,  ` `            ``int` `m, ``int` `n, ``int` `x)  ` `{  ` `    ``int` `count = 0;  ` `     `  `    ``HashSet<``int``> us = ``new` `HashSet<``int``>(); ` `     `  `    ``// insert all the elements  ` `    ``// of 1st array in the hash  ` `    ``// table(unordered_set 'us')  ` `    ``for` `(``int` `i = 0; i < m; i++)  ` `        ``us.Add(arr1[i]);  ` `     `  `    ``// for each element of 'arr2[]  ` `    ``for` `(``int` `j = 0; j < n; j++)  ` ` `  `        ``// find (x - arr2[j]) in 'us'  ` `        ``if``(us.Contains(x - arr2[j]))  ` `            ``count++;  ` `     `  `    ``// required count of pairs  ` `    ``return` `count;  ` `}  ` ` `  `// Driver Code  ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `[]arr1 = {1, 3, 5, 7};  ` `    ``int` `[]arr2 = {2, 3, 5, 8};  ` `    ``int` `m = arr1.Length;  ` `    ``int` `n = arr2.Length;  ` `    ``int` `x = 10;  ` `    ``Console.Write(``"Count = "` `        ``+ countPairs(arr1, arr2, m, n, x)); ` `} ` `} ` ` `  `// This code contributed by Rajput-Ji `

Output :

```Count = 2
```

Time Complexity : O(m+n)
Auxiliary space : O(m), hash table should be created of the array having smaller size so as to reduce the space complexity.

Method 4 (Efficient Approach): This approach uses the concept of two pointers, one to traverse 1st array from left to right and another to traverse the 2nd array from right to left.

Algorithm :

```countPairs(arr1, arr2, m, n, x)

Initialize l = 0, r = n - 1
Initialize count = 0

loop while l = 0
if (arr1[l] + arr2[r]) == x
l++, r--
count++
else if (arr1[l] + arr2[r]) < x
l++
else
r--

return count
```

## C++

 `// C++ implementation to count  ` `// pairs from both sorted arrays  ` `// whose sum is equal to a given  ` `// value ` `#include ` `using` `namespace` `std; ` ` `  `// function to count all pairs  ` `// from both the sorted arrays  ` `// whose sum is equal to a given  ` `// value ` `int` `countPairs(``int` `arr1[], ``int` `arr2[],  ` `               ``int` `m, ``int` `n, ``int` `x) ` `{ ` `    ``int` `count = 0;  ` `    ``int` `l = 0, r = n - 1; ` `     `  `    ``// traverse 'arr1[]' from  ` `    ``// left to right ` `    ``// traverse 'arr2[]' from  ` `    ``// right to left ` `    ``while` `(l < m && r >= 0) ` `    ``{ ` `        ``// if this sum is equal  ` `        ``// to 'x', then increment 'l',  ` `        ``// decrement 'r' and ` `        ``// increment 'count' ` `        ``if` `((arr1[l] + arr2[r]) == x) ` `        ``{ ` `            ``l++; r--; ` `            ``count++;          ` `        ``} ` `         `  `        ``// if this sum is less  ` `        ``// than x, then increment l ` `        ``else` `if` `((arr1[l] + arr2[r]) < x) ` `            ``l++; ` `             `  `        ``// else decrement 'r'  ` `        ``else` `            ``r--;  ` `    ``} ` `     `  `    ``// required count of pairs      ` `    ``return` `count; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `arr1[] = {1, 3, 5, 7}; ` `    ``int` `arr2[] = {2, 3, 5, 8}; ` `    ``int` `m = ``sizeof``(arr1) / ``sizeof``(arr1); ` `    ``int` `n = ``sizeof``(arr2) / ``sizeof``(arr2); ` `    ``int` `x = 10; ` `    ``cout << ``"Count = "` `          ``<< countPairs(arr1, arr2, m, n, x); ` `    ``return` `0;      ` `} `

## Java

 `// Java implementation to count  ` `// pairs from both sorted arrays  ` `// whose sum is equal to a given  ` `// value ` `import` `java.io.*; ` ` `  `class` `GFG { ` ` `  `    ``// function to count all pairs  ` `    ``// from both the sorted arrays  ` `    ``// whose sum is equal to a given  ` `    ``// value ` `    ``static` `int` `countPairs(``int` `arr1[],  ` `         ``int` `arr2[], ``int` `m, ``int` `n, ``int` `x) ` `    ``{ ` `        ``int` `count = ``0``;  ` `        ``int` `l = ``0``, r = n - ``1``; ` `         `  `        ``// traverse 'arr1[]' from  ` `        ``// left to right ` `        ``// traverse 'arr2[]' from  ` `        ``// right to left ` `        ``while` `(l < m && r >= ``0``) ` `        ``{ ` `             `  `            ``// if this sum is equal  ` `            ``// to 'x', then increment 'l',  ` `            ``// decrement 'r' and ` `            ``// increment 'count' ` `            ``if` `((arr1[l] + arr2[r]) == x) ` `            ``{ ` `                ``l++; r--; ` `                ``count++;          ` `            ``} ` `             `  `            ``// if this sum is less  ` `            ``// than x, then increment l ` `            ``else` `if` `((arr1[l] + arr2[r]) < x) ` `                ``l++; ` `                 `  `            ``// else decrement 'r'  ` `            ``else` `                ``r--;  ` `        ``} ` `         `  `        ``// required count of pairs  ` `        ``return` `count; ` `    ``} ` `     `  `    ``// Driver Code ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{ ` `        ``int` `arr1[] = {``1``, ``3``, ``5``, ``7``}; ` `        ``int` `arr2[] = {``2``, ``3``, ``5``, ``8``}; ` `        ``int` `m = arr1.length; ` `        ``int` `n = arr2.length; ` `        ``int` `x = ``10``; ` `        ``System.out.println( ``"Count = "` `         ``+ countPairs(arr1, arr2, m, n, x)); ` `    ``} ` `} ` ` `  `// This code is contributed by anuj_67. `

## Python3

 `# Python 3 implementation to count ` `# pairs from both sorted arrays ` `# whose sum is equal to a given ` `# value ` ` `  `# function to count all pairs ` `# from both the sorted arrays ` `# whose sum is equal to a given ` `# value ` `def` `countPairs(arr1, arr2, m, n, x): ` `    ``count, l, r ``=` `0``, ``0``, n ``-` `1` `     `  `    ``# traverse 'arr1[]' from ` `    ``# left to right ` `    ``# traverse 'arr2[]' from ` `    ``# right to left ` `    ``while` `(l < m ``and` `r >``=` `0``): ` `         `  `        ``# if this sum is equal ` `        ``# to 'x', then increment 'l', ` `        ``# decrement 'r' and ` `        ``# increment 'count' ` `        ``if` `((arr1[l] ``+` `arr2[r]) ``=``=` `x): ` `            ``l ``+``=` `1` `            ``r ``-``=` `1` `            ``count ``+``=` `1` `             `  `        ``# if this sum is less ` `        ``# than x, then increment l ` `        ``elif` `((arr1[l] ``+` `arr2[r]) < x): ` `            ``l ``+``=` `1` `             `  `        ``# else decrement 'r' ` `        ``else``: ` `            ``r ``-``=` `1` `             `  `    ``# required count of pairs ` `    ``return` `count ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``arr1 ``=` `[``1``, ``3``, ``5``, ``7``] ` `    ``arr2 ``=` `[``2``, ``3``, ``5``, ``8``] ` `    ``m ``=` `len``(arr1) ` `    ``n ``=` `len``(arr2) ` `    ``x ``=` `10` `    ``print``(``"Count ="``, ` `            ``countPairs(arr1, arr2, ` `                          ``m, n, x)) ` ` `  `# This code is contributed  ` `# by PrinciRaj19992 `

## C#

 `// C# implementation to count  ` `// pairs from both sorted arrays  ` `// whose sum is equal to a given  ` `// value ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// function to count all pairs  ` `    ``// from both the sorted arrays  ` `    ``// whose sum is equal to a given  ` `    ``// value ` `    ``static` `int` `countPairs(``int` `[]arr1,  ` `        ``int` `[]arr2, ``int` `m, ``int` `n, ``int` `x) ` `    ``{ ` `        ``int` `count = 0;  ` `        ``int` `l = 0, r = n - 1; ` `         `  `        ``// traverse 'arr1[]' from  ` `        ``// left to right ` `        ``// traverse 'arr2[]' from  ` `        ``// right to left ` `        ``while` `(l < m && r >= 0) ` `        ``{ ` `             `  `            ``// if this sum is equal  ` `            ``// to 'x', then increment 'l',  ` `            ``// decrement 'r' and ` `            ``// increment 'count' ` `            ``if` `((arr1[l] + arr2[r]) == x) ` `            ``{ ` `                ``l++; r--; ` `                ``count++;          ` `            ``} ` `             `  `            ``// if this sum is less  ` `            ``// than x, then increment l ` `            ``else` `if` `((arr1[l] + arr2[r]) < x) ` `                ``l++; ` `                 `  `            ``// else decrement 'r'  ` `            ``else` `                ``r--;  ` `        ``} ` `         `  `        ``// required count of pairs  ` `        ``return` `count; ` `    ``} ` `     `  `    ``// Driver Code ` `    ``public` `static` `void` `Main ()  ` `    ``{ ` `        ``int` `[]arr1 = {1, 3, 5, 7}; ` `        ``int` `[]arr2 = {2, 3, 5, 8}; ` `        ``int` `m = arr1.Length; ` `        ``int` `n = arr2.Length; ` `        ``int` `x = 10; ` `        ``Console.WriteLine( ``"Count = "` `        ``+ countPairs(arr1, arr2, m, n, x)); ` `    ``} ` `} ` ` `  `// This code is contributed by anuj_67. `

## PHP

 `= 0) ` `    ``{ ` `        ``// if this sum is equal  ` `        ``// to 'x', then increment 'l',  ` `        ``// decrement 'r' and ` `        ``// increment 'count' ` `        ``if` `((``\$arr1``[``\$l``] + ``\$arr2``[``\$r``]) == ``\$x``) ` `        ``{ ` `            ``\$l``++; ``\$r``--; ` `            ``\$count``++;          ` `        ``} ` `         `  `        ``// if this sum is less  ` `        ``// than x, then increment l ` `        ``else` `if` `((``\$arr1``[``\$l``] + ``\$arr2``[``\$r``]) < ``\$x``) ` `            ``\$l``++; ` `             `  `        ``// else decrement 'r'  ` `        ``else` `            ``\$r``--;  ` `    ``} ` `     `  `    ``// required count of pairs      ` `    ``return` `\$count``; ` `} ` ` `  `// Driver Code ` `     ``\$arr1` `= ``array``(1, 3, 5, 7); ` `     ``\$arr2` `= ``array``(2, 3, 5, 8); ` `     ``\$m` `= ``count``(``\$arr1``); ` `     ``\$n` `= ``count``(``\$arr2``); ` `     ``\$x` `= 10; ` `     ``echo` `"Count = "` `    ``, countPairs(``\$arr1``, ``\$arr2``, ``\$m``, ``\$n``, ``\$x``); ` `// This code is contributed by anuj_67 ` ` `  `?> `

Output :

```Count = 2
```

Time Complexity : O(m + n)
Auxiliary space : O(1)

This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.