Related Articles

Related Articles

Count of packets placed in each box after performing given operations
  • Last Updated : 01 Dec, 2020

Given two arrays arr[] and operations[] consisting of N and M integers, and an integer C. The array arr[] represents the initial number of packets in the N boxes, each of capacity C. Starting from position 1, perform the following types of operations in the sequence specified by the array operations[]:

  • Type 1: Move to the left box.
  • Type 2: Move to the right box.
  • Type 3:Pick a packet from the current box.
  • Type 4:Drop a packet from the current box.
  • Type 5:Print the number of packets in each box and exit.

Any operation is ignored in the following cases:

  • Move left operation is ignored if the current position is 1.
  • Move right operation is ignored if the current position is N.
  • Pick a packet operation is ignored if a packet is already picked and not dropped yet or the current box is empty.
  • Drop a packet operation is ignored if no packet is picked or the current box already has C packets

Examples:

Input: N = 3, C = 5, arr[] = {2, 5, 2}, M = 6, operations[] = {3, 2, 4, 1, 4, 5} 
Output: {1, 5, 2} 
Explanation:
Operations can be performed as follows starting from position 1:
Type 3: Pick a packet. Position = 1 and arr[] = {1, 5, 2}.
Type 2: Move right. Position = 2 and arr[] = {1, 5, 2}
Type 4: Drop packet. Position = 2 and arr[] = {1, 5, 2}
Type 1: Move left. Position = 1 and arr[] = {1, 5, 2}.
Type 4: Drop packet. Position = 1 and arr[] = {2, 5, 2}.
Type 5: Print array arr[] = {2, 5, 2}.

Input: N = 3, C = 1, arr[] = {1, 1, 1}, M = 4, operations[] = {3, 2, 4, 5} 
Output: {0, 1, 1} 
Explanation:
Operations can be performed as follows starting from position 1:
Type 3: Pick a packet. Position = 1 and arr[] = {0, 1, 1}.
Type 2: Move right. Position = 2 and arr[] = {0, 1, 1}
Type 4: Drop packet. Position = 2 and arr[] = {0, 1, 1}
Type 5: Print array arr[] = {0, 1, 1}.



Approach: The idea is to assign variables for each task such that for the current index, initialize curr with 0. To check if the element is picked, initialize picked with false. Follow the steps below to solve the problem:

  1. Keep a boolean variable picked to keep track if some packet has already been picked.
  2. If the operation type is 1 and curr is not 0, move to the left, decrementing curr by 1.
  3. If the operation type is 2 and curr is not (N – 1), move to the right, incrementing current curr by 1.
  4. If the operation type is 3 and picked is false and the current box is not empty, decrease the packet by 1 in the current box and mark picked as true.
  5. If the operation type is 4 and picked is true and the current box is not full, increase the packet by 1 in the current box and mark picked as false.
  6. If the operation type is 5, print the current values in the array arr[] and exit.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
 
#include <iostream>
using namespace std;
#define ll long long int
 
// Function to print final array after
// performing all the operations
int printFinalArray(int* a, int n,
                    int* operations,
                    int p, int capacity)
{
 
    // Initialize variables
    int i, curr = 0;
    bool picked = false;
 
    // Traverse through all operations
    for (i = 0; i < p; i++) {
 
        // Operation Type
        int s = operations[i];
        bool flag = false;
 
        switch (s) {
 
        // Move left
        case 1:
            if (curr != 0)
                curr--;
            break;
 
        // Move right
        case 2:
            if (curr != n - 1)
                curr++;
            break;
 
        // Pick a packet
        case 3:
            if (picked == false
                && a[curr] != 0) {
                picked = true;
                a[curr]--;
            }
            break;
 
        // Drop a packet
        case 4:
            if (picked == true
                && a[curr] != capacity) {
                picked = false;
                a[curr]++;
            }
            break;
 
        // Exit
        default:
            flag = true;
        }
 
        if (flag == true)
            break;
    }
 
    // Print final array
    for (i = 0; i < n; i++) {
        cout << a[i] << " ";
    }
}
 
// Driver Code
int main()
{
    // Given capacity
    int capacity = 5;
 
    // Given array with initial values
    int a[] = { 2, 5, 2 };
 
    // Array size
    int N = sizeof(a) / sizeof(a[0]);
 
    // Operations
    int operations[] = { 3, 2, 4, 1, 4, 5 };
 
    // Number of operations
    int M = sizeof(operations)
            / sizeof(operations[0]);
 
    // Function call
    printFinalArray(a, N, operations,
                    M, capacity);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to print final array after
// performing aint the operations
static void printFinalArray(int []a, int n,
                            int []operations,
                            int p, int capacity)
{
     
    // Initialize variables
    int i, curr = 0;
    boolean picked = false;
     
    // Traverse through aint operations
    for(i = 0; i < p; i++)
    {
         
        // Operation Type
        int s = operations[i];
        boolean flag = false;
         
        switch(s)
        {
             
            // Move left
            case 1:
                if (curr != 0)
                    curr--;
                break;
     
            // Move right
            case 2:
                if (curr != n - 1)
                    curr++;
                break;
     
            // Pick a packet
            case 3:
                if (picked == false &&
                    a[curr] != 0)
                {
                    picked = true;
                    a[curr]--;
                }
                break;
                 
            // Drop a packet
            case 4:
                if (picked == true && 
                    a[curr] != capacity)
                {
                    picked = false;
                    a[curr]++;
                }
                break;
                 
            // Exit
            default:
                flag = true;
        }
         
        if (flag == true)
            break;
    }
     
    // Print final array
    for(i = 0; i < n; i++)
    {
        System.out.print(a[i] + " ");
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given capacity
    int capacity = 5;
 
    // Given array with initial values
    int a[] = { 2, 5, 2 };
 
    // Array size
    int N = a.length;
 
    // Operations
    int operations[] = { 3, 2, 4, 1, 4, 5 };
 
    // Number of operations
    int M = operations.length;
 
    // Function call
    printFinalArray(a, N, operations,
                    M, capacity);
}
}
 
// This code is contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to print final array after
# performing all the operations
def printFinalArray(a, n,
                    operations, p, capacity):
 
    # Initialize variables
    curr = 0
    picked = False
 
    # Traverse through all operations
    for i in range(p):
 
        # Operation Type
        s = operations[i]
        flag = False
 
        # Move left
        if (curr != 0):
            curr -= 1
            break
 
        # Move right
        if (curr != n - 1):
            curr += 1
            break
 
        # Pick a packet
        if (picked == False
                and a[curr] != 0):
            picked = True
            a[curr] -= 1
            break
 
        # Drop a packet
        if (picked == True
                and a[curr] != capacity):
            picked = False
            a[curr] += 1
            break
 
        # Exit
        else:
            flag = True
 
        if (flag == True):
            break
 
    # Print final array
    for i in range(n):
        print(a[i], end=" ")
 
# Driver Code
if __name__ == "__main__":
 
    # Given capacity
    capacity = 5
 
    # Given array with initial values
    a = [2, 5, 2]
 
    # Array size
    N = len(a)
 
    # Operations
    operations = [3, 2, 4, 1, 4, 5]
 
    # Number of operations
    M = len(operations)
 
    # Function call
    printFinalArray(a, N, operations,
                    M, capacity)
 
# This code is contributed by chitranayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
  
class GFG{
  
// Function to print final array after
// performing aint the operations
static void printFinalArray(int []a, int n,
                            int []operations,
                            int p, int capacity)
{
     
    // Initialize variables
    int i, curr = 0;
    bool picked = false;
      
    // Traverse through aint operations
    for(i = 0; i < p; i++)
    {
          
        // Operation Type
        int s = operations[i];
        bool flag = false;
          
        switch(s)
        {
              
            // Move left
            case 1:
                if (curr != 0)
                    curr--;
                break;
      
            // Move right
            case 2:
                if (curr != n - 1)
                    curr++;
                break;
      
            // Pick a packet
            case 3:
                if (picked == false &&
                    a[curr] != 0)
                {
                    picked = true;
                    a[curr]--;
                }
                break;
                  
            // Drop a packet
            case 4:
                if (picked == true && 
                    a[curr] != capacity)
                {
                    picked = false;
                    a[curr]++;
                }
                break;
                  
            // Exit
            default:
                flag = true;
            break;
        }
          
        if (flag == true)
            break;
    }
      
    // Print final array
    for(i = 0; i < n; i++)
    {
        Console.Write(a[i] + " ");
    }
}
  
// Driver Code
public static void Main()
{
     
    // Given capacity
    int capacity = 5;
  
    // Given array with initial values
    int[] a = { 2, 5, 2 };
  
    // Array size
    int N = a.Length;
  
    // Operations
    int[] operations = { 3, 2, 4, 1, 4, 5 };
  
    // Number of operations
    int M = operations.Length;
  
    // Function call
    printFinalArray(a, N, operations,
                    M, capacity);
}
}
 
// This code is contributed by sanjoy_62

chevron_right


Output: 

2 5 2

 

Time Complexity: O(M + N)
Auxiliary Space: O(M + N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :