Count of N digit palindromic numbers divisible by 9

Given an integer N, the task is to count the number of N digit palindromic numbers containing digits from 1 to 9 and divisible by 9.

Examples:

Input: N = 1
Output: 1
Explanation:
Only 9 is 1 digit number which is palindrome and divisible by 9.

Input: N = 3
Output: 9
Explanation:
Three digit numbers those are palindrome and divisible by 9 are –
{171, 252, 333, 414, 585, 666, 747, 828, 999}

Approach: The key observation in the problem is if the number is divisible by 9 then sum of digits of the number is also divisible by 9. Therefore, the problem can be segreated on the basis of its parity.

  • If N is odd: We can put any number from 1 to 9 in position 1 to (N-1)/2, Similarly, the other digits are chosen in reverse order to form palindromic number and the middle element is chosen on to form the sum of digits divisible by 9. Therefore, there are 9 choices for each position of (N-1)/2 digits of the number due to which the count of such number will be:
    Count of N-digit Palindromic numbers =
                     9(N-1)/2
    
  • If N is even: We can put any number from 1 to 9 at the position from 1 to (N-2)/2, Similarly, the other digits are chosen in reverse order to form palindromic number and the middle element is chosen on to form the sum of digits divisible by 9. Therefore, there are 9 choices for each position of (N-2)/2 digits of the number due to which the count of such number will be:
    Count of N-digit Palindromic numbers =
                     9(N-2)/2
    

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to count the
// number of N digit palindromic
// numbers divisible by 9
  
#include <bits/stdc++.h>
  
using namespace std;
  
// Function to find the count of 
// N digits palindromic numbers 
// which are divisible by 9
int countPalindromic(int n)
{
    int count;
  
    // if N is odd
    if (n % 2 == 1) {
        count = pow(9, (n - 1) / 2);
    }
    // if N is even
    else
    {
        count = pow(9, (n - 2) / 2);
    }
    return count;
}
  
// Driver Code
int main()
{
    int n = 3;
    cout << countPalindromic(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to count the
// number of N digit palindromic
// numbers divisible by 9
import java.util.*;
  
class GFG{
      
// Function to find the count of 
// N digits palindromic numbers 
// which are divisible by 9
static int countPalindromic(int n)
{
    int count;
  
    // If N is odd
    if (n % 2 == 1)
    {
        count = (int) Math.pow(9, (n - 1) / 2);
    }
      
    // If N is even
    else
    {
        count = (int) Math.pow(9, (n - 2) / 2);
    }
    return count;
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 3;
    System.out.println(countPalindromic(n));
}
}
  
// This code is contributed by ANKITKUMAR34

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to count the
# number of N digit palindromic
# numbers divisible by 9
  
# Function to find the count of 
# N digits palindromic numbers 
# which are divisible by 9
def countPalindromic(n):
      
    count = 0
      
    # If N is odd
    if (n % 2 == 1):
        count = pow(9, (n - 1) // 2)
          
    # If N is even
    else:
        count = pow(9, (n - 2) // 2)
          
    return count
  
# Driver Code
n = 3
print(countPalindromic(n))
  
# This code is contributed by ANKITKUMAR34

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to count the
// number of N digit palindromic
// numbers divisible by 9
using System;
class GFG{
      
// Function to find the count of 
// N digits palindromic numbers 
// which are divisible by 9
static int countPalindromic(int n)
{
    int count;
  
    // If N is odd
    if (n % 2 == 1)
    {
        count = (int) Math.Pow(9, (n - 1) / 2);
    }
      
    // If N is even
    else
    {
        count = (int) Math.Pow(9, (n - 2) / 2);
    }
    return count;
}
  
// Driver Code
public static void Main()
{
    int n = 3;
    Console.Write(countPalindromic(n));
}
}
  
// This code is contributed by Nidhi_biet

chevron_right


Output:

9

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : ANKITKUMAR34, nidhi_biet