# Count of N-digit numbers with at least one digit repeating

Last Updated : 31 Oct, 2023

Given a positive integer N, the task is to find the number of N-digit numbers such that at least one digit in the number has occurred more than once.

Examples:

Input: N = 2
Output: 9
Explanation:
All the 2-digit number such that at least 1 digits occurs more than once are {11, 22, 33, 44, 55, 66, 77, 88, 99}. Therefore, the total count is 9.

Input: N = 5
Output: 62784

Naive Approach: The simplest approach to solve the given problem is to generate all possible N-digit numbers and count those numbers having at least one digit occurring more than once. After checking for all the numbers, print the value of the count as the resultant total count of numbers.

Algorithm

• Take input integer N from the user.
• Initialize a variable count to 0.
• Loop through all possible N-digit numbers, from 10^(N-1) to 10^N – 1.
• For each number, convert it to a string and check if any digit occurs more than once using a nested loop.
• If a digit occurs more than once, increment the count.
• After checking all numbers, print the value of the count as the resultant total count of numbers.

## C++

 `#include ` `#include ` `#include ` `#include `   `using` `namespace` `std;`   `int` `main() {` `    ``int` `N = 2;  ``// set the value of N` `    ``int` `countRepeated = 0;  ``// initialize a counter variable`   `    ``// iterate through all N-digit numbers` `    ``for` `(``int` `i = ``pow``(10, N - 1); i < ``pow``(10, N); i++) {` `        ``// convert the current number to a string` `        ``string digits = to_string(i);` `        `  `        ``// iterate through each digit in the string` `        ``for` `(``char` `digit : digits) {` `            ``// count the number of occurrences of the current digit in the string` `            ``if` `(count(digits.begin(), digits.end(), digit) > 1) {` `                ``// if the digit appears more than once, increment the counter and move on to the next number` `                ``countRepeated++;` `                ``break``;` `            ``}` `        ``}` `    ``}`   `    ``// output the total count of N-digit numbers with at least one digit repeated` `    ``cout << ``"Total count of N-digit numbers with at least one digit repeated: "` `<< countRepeated << endl;`   `    ``return` `0;  ``// indicate successful program termination` `}`

## Java

 `public` `class` `Main {` `    ``public` `static` `void` `main(String[] args) {` `        ``int` `N = ``2``; ` `        ``int` `countRepeated = ``0``; `   `        ``// Iterate through all N-digit numbers` `        ``for` `(``int` `i = (``int``) Math.pow(``10``, N - ``1``); i < Math.pow(``10``, N); i++) {` `            ``// Convert the current number to a string` `            ``String digits = String.valueOf(i);`   `            ``// Create an array to keep track of the occurrences of each digit` `            ``int``[] digitCount = ``new` `int``[``10``];`   `            ``// Iterate through each digit in the string` `            ``for` `(``char` `digit : digits.toCharArray()) {` `                ``int` `numericDigit = Character.getNumericValue(digit);`   `                ``// Increment the count for the current digit` `                ``digitCount[numericDigit]++;`   `                ``// If the digit appears more than once, increment the counter and move on to the next number` `                ``if` `(digitCount[numericDigit] > ``1``) {` `                    ``countRepeated++;` `                    ``break``;` `                ``}` `            ``}` `        ``}`   `         `  `        ``System.out.println(``"Total count of N-digit numbers with at least one digit repeated: "` `+ countRepeated);` `    ``}` `}`

## Python3

 `countRepeated ``=` `0`  `# initialize a counter variable` `N ``=` `2`  `# set the value of N`   `# iterate through all N-digit numbers` `for` `i ``in` `range``(``10``*``*``(N``-``1``), ``10``*``*``N):` `    ``# convert the current number to a string` `    ``digits ``=` `str``(i)`   `    ``# iterate through each digit in the string` `    ``for` `digit ``in` `digits:` `        ``# count the number of occurrences of the current digit in the string` `        ``if` `digits.count(digit) > ``1``:` `            ``# if the digit appears more than once, increment the counter and move on to the next number` `            ``countRepeated ``+``=` `1` `            ``break`   `# output the total count of N-digit numbers with at least one digit repeated` `print``(``"Total count of N-digit numbers with at least one digit repeated: "``, countRepeated)`

## C#

 `using` `System;`   `class` `Program {` `    ``static` `void` `Main()` `    ``{` `        ``int` `N = 2; ``// Set the value of N` `        ``int` `countRepeated` `            ``= 0; ``// Initialize a counter variable`   `        ``// Iterate through all N-digit numbers` `        ``for` `(``int` `i = (``int``)Math.Pow(10, N - 1);` `             ``i < Math.Pow(10, N); i++) {` `            ``// Convert the current number to a string` `            ``string` `digits = i.ToString();`   `            ``// Create a boolean flag to check if a digit is` `            ``// repeated` `            ``bool` `digitRepeated = ``false``;`   `            ``// Iterate through each digit in the string` `            ``foreach``(``char` `digit ``in` `digits)` `            ``{` `                ``// Count the number of occurrences of the` `                ``// current digit in the string` `                ``int` `digitCount` `                    ``= digits.Split(digit).Length - 1;`   `                ``// If the digit appears more than once, set` `                ``// the flag and break out of the loop` `                ``if` `(digitCount > 1) {` `                    ``digitRepeated = ``true``;` `                    ``break``;` `                ``}` `            ``}`   `            ``// If at least one digit is repeated, increment` `            ``// the counter` `            ``if` `(digitRepeated) {` `                ``countRepeated++;` `            ``}` `        ``}`   `        ``// Output the total count of N-digit numbers with at` `        ``// least one digit repeated` `        ``Console.WriteLine(` `            ``"Total count of N-digit numbers with at least one digit repeated: "` `            ``+ countRepeated);` `    ``}` `}`

## Javascript

 `function` `countNumbersWithRepeatedDigit(N) {` `    ``let countRepeated = 0;`   `    ``// Iterate through all N-digit numbers` `    ``for` `(let i = Math.pow(10, N - 1); i < Math.pow(10, N); i++) {` `        ``// Convert the current number to a string` `        ``const digits = i.toString();`   `        ``// Create a boolean flag to check if a digit is repeated` `        ``let digitRepeated = ``false``;`   `        ``// Iterate through each digit in the string` `        ``for` `(let j = 0; j < digits.length; j++) {` `            ``// Count the number of occurrences of the current digit in the string` `            ``const digitCount = digits.split(digits[j]).length - 1;`   `            ``// If the digit appears more than once, set the flag and break out of the loop` `            ``if` `(digitCount > 1) {` `                ``digitRepeated = ``true``;` `                ``break``;` `            ``}` `        ``}`   `        ``// If at least one digit is repeated, increment the counter` `        ``if` `(digitRepeated) {` `            ``countRepeated++;` `        ``}` `    ``}`   `    ``// Output the total count of N-digit numbers with at least one digit repeated` `    ``console.log(` `        ``"Total count of N-digit numbers with at least one digit repeated: "` `+ countRepeated` `    ``);` `}`   `const N = 2; ``// Set the value of N` `countNumbersWithRepeatedDigit(N);`

Output

```Total count of N-digit numbers with at least one digit repeated: 9

```

Time Complexity: O(N *10N)
Auxiliary Space: O(1)

Efficient Approach: The above approach can also be optimized by using Dynamic Programming because the above problem has Overlapping subproblems and an Optimal substructure. The subproblems can be stored in dp[][][] table memoization where dp[digit][mask][repeated] stores the answer from the digitth position till the end, where the mask stores all the digits included in the number till now and repeated denotes if any digit has occurred more than once. Follow the steps below to solve the problem:

• Initialize a global multidimensional array dp[50][1024][2] with all values as -1 that stores the result of each recursive call.
• Define a recursive function, say countOfNumbers(digit, mask, repeated, N) by performing the following steps.
• If the value of a digit is equal to (N + 1) then return 1 as a valid N-digit number is formed if repeated is equal to true. Otherwise, return 0.
• If repeated is equal to true, then return pow(10, N – digit + 1).
• If the current digit is 1, then any digit from [1, 9] can be placed and if N = 1, then 0 can be placed as well.
• Iterate over the range [N == 1 ? 0 : 1, 9] using the variable i and perform the following steps:
• If the ith bit of the mask is set, then add the value of countOfNumbers(digit + 1, mask|(1<<i), 1, N).
• Otherwise, add the value of countOfNumbers(digit + 1, mask|(1<<i), 0, N).
• Otherwise, iterate over the range [0, 9] using the variable i and perform the following steps:
• If the ith bit of the mask is set, then add the value of countOfNumbers(digit + 1, mask|(1<<i), 1, N).
• Otherwise, add the value of countOfNumbers(digit + 1, mask|(1<<i), 0, N).
• Return the sum of all possible valid placements of digits val as the result from the current recursive call.
• Print the value returned by the function countOfNumbers(1, 0, 0, N) as the resultant count of N-digit number satisfying the given criteria.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach` `#include ` `using` `namespace` `std;`   `int` `dp[50][1 << 10][2];`   `// Function to find the number of N` `// digit numbers such that at least` `// one digit occurs more than once` `int` `countOfNumbers(``int` `digit, ``int` `mask,` `                   ``bool` `repeated, ``int` `n)` `{` `    ``// Base Case` `    ``if` `(digit == n + 1) {` `        ``if` `(repeated == ``true``) {` `            ``return` `1;` `        ``}` `        ``return` `0;` `    ``}`   `    ``// If repeated is true, then for` `    ``// remaining positions any digit` `    ``// can be placed` `    ``if` `(repeated == ``true``) {` `        ``return` `pow``(10, n - digit + 1);` `    ``}`   `    ``// If the current state has already` `    ``// been computed, then return it` `    ``int``& val = dp[digit][mask][repeated];` `    ``if` `(val != -1) {` `        ``return` `val;` `    ``}`   `    ``// Stores the count of number for` `    ``// the current recursive calls` `    ``val = 0;`   `    ``// If current position is 1, then` `    ``// any digit can be placed.`   `    ``// If n = 1, 0 can be also placed` `    ``if` `(digit == 1) {`   `        ``for` `(``int` `i = (n == 1 ? 0 : 1);` `             ``i <= 9; ++i) {`   `            ``// If a digit has occurred` `            ``// for the second time, then` `            ``// set repeated to 1` `            ``if` `(mask & (1 << i)) {` `                ``val += countOfNumbers(` `                    ``digit + 1, mask | (1 << i), 1, n);` `            ``}`   `            ``// Otherwise` `            ``else` `{` `                ``val += countOfNumbers(` `                    ``digit + 1, mask | (1 << i), 0, n);` `            ``}` `        ``}` `    ``}`   `    ``// For remaining positions any` `    ``// digit can be placed` `    ``else` `{` `        ``for` `(``int` `i = 0; i <= 9; ++i) {`   `            ``// If a digit has occurred` `            ``// for the second time, then` `            ``// set repeated to 1` `            ``if` `(mask & (1 << i)) {` `                ``val += countOfNumbers(` `                    ``digit + 1, mask | (1 << i), 1, n);` `            ``}` `            ``else` `{` `                ``val += countOfNumbers(` `                    ``digit + 1, mask | (1 << i), 0, n);` `            ``}` `        ``}` `    ``}`   `    ``// Return the resultant count for` `    ``// the current recursive call` `    ``return` `val;` `}`   `// Function to count all the N-digit` `// numbers having at least one digit's` `// occurrence more than once` `void` `countNDigitNumber(``int` `N)` `{` `    ``// Initialize dp array with -1` `    ``memset``(dp, -1, ``sizeof` `dp);`   `    ``// Function to count all possible` `    ``// number satisfying the given` `    ``// criteria` `    ``cout << countOfNumbers(1, 0, 0, N);` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `N = 2;` `    ``countNDigitNumber(N);`   `    ``return` `0;` `}`

## Java

 `import` `java.util.Arrays;`   `// Java program for the above approach`   `class` `GFG {`   `    ``public` `static` `int``[][][] dp = ``new` `int``[``50``][``1` `<< ``10``][``2``];`   `    ``// Function to find the number of N` `    ``// digit numbers such that at least` `    ``// one digit occurs more than once` `    ``public` `static` `int` `countOfNumbers(``int` `digit, ``int` `mask, ` `                                     ``int` `repeated, ``int` `n) ` `    ``{` `      `  `        ``// Base Case` `        ``if` `(digit == n + ``1``) {` `            ``if` `(repeated == ``1``) {` `                ``return` `1``;` `            ``}` `            ``return` `0``;` `        ``}`   `        ``// If repeated is true, then for` `        ``// remaining positions any digit` `        ``// can be placed` `        ``if` `(repeated == ``1``) {` `            ``return` `(``int``) Math.pow(``10``, n - digit + ``1``);` `        ``}`   `        ``// If the current state has already` `        ``// been computed, then return it` `        ``int` `val = dp[digit][mask][repeated];` `        ``if` `(val != -``1``) {` `            ``return` `val;` `        ``}`   `        ``// Stores the count of number for` `        ``// the current recursive calls` `        ``val = ``0``;`   `        ``// If current position is 1, then` `        ``// any digit can be placed.`   `        ``// If n = 1, 0 can be also placed` `        ``if` `(digit == ``1``) {`   `            ``for` `(``int` `i = (n == ``1` `? ``0` `: ``1``); i <= ``9``; ++i) {`   `                ``// If a digit has occurred` `                ``// for the second time, then` `                ``// set repeated to 1` `                ``if` `((mask & (``1` `<< i)) > ``0``) {` `                    ``val += countOfNumbers(digit + ``1``, mask | (``1` `<< i), ``1``, n);` `                ``}`   `                ``// Otherwise` `                ``else` `{` `                    ``val += countOfNumbers(digit + ``1``, mask | (``1` `<< i), ``0``, n);` `                ``}` `            ``}` `        ``}`   `        ``// For remaining positions any` `        ``// digit can be placed` `        ``else` `{` `            ``for` `(``int` `i = ``0``; i <= ``9``; ++i) {`   `                ``// If a digit has occurred` `                ``// for the second time, then` `                ``// set repeated to 1` `                ``if` `((mask & (``1` `<< i)) > ``0``) {` `                    ``val += countOfNumbers(digit + ``1``, mask | (``1` `<< i), ``1``, n);` `                ``} ``else` `{` `                    ``val += countOfNumbers(digit + ``1``, mask | (``1` `<< i), ``0``, n);` `                ``}` `            ``}` `        ``}`   `        ``// Return the resultant count for` `        ``// the current recursive call` `        ``return` `val;` `    ``}`   `    ``// Function to count all the N-digit` `    ``// numbers having at least one digit's` `    ``// occurrence more than once` `    ``public` `static` `void` `countNDigitNumber(``int` `N) ` `    ``{` `      `  `        ``// Initialize dp array with -1` `        ``for` `(``int` `i = ``0``; i < ``50``; i++) {` `            ``for` `(``int` `j = ``0``; j < ``1` `<< ``10``; j++) {` `                ``for` `(``int` `k = ``0``; k < ``2``; k++) {` `                    ``dp[i][j][k] = -``1``;` `                ``}` `            ``}` `        ``}` `      `  `        ``// Function to count all possible` `        ``// number satisfying the given` `        ``// criteria` `        ``System.out.println(countOfNumbers(``1``, ``0``, ``0``, N));` `    ``}`   `    ``// Driver Code` `    ``public` `static` `void` `main(String args[])` `    ``{` `        ``int` `N = ``2``;` `        ``countNDigitNumber(N);`   `    ``}` `}`   `// This code is contributed by gfgking.`

## Python3

 `# Python program for the above approach`   `dp ``=` `[[[``-``1` `for` `i ``in` `range``(``2``)] ``for` `i ``in` `range``(``1` `<< ``10``)] ``for` `i ``in` `range``(``50``)]`   `# Function to find the number of N` `# digit numbers such that at least` `# one digit occurs more than once` `def` `countOfNumbers(digit, mask, repeated, n):` `    ``global` `dp` `    ``# Base Case` `    ``if` `(digit ``=``=` `n ``+` `1``):` `        ``if` `(repeated ``=``=` `True``):` `            ``return` `1` `        ``return` `0`   `    ``# If repeated is true, then for` `    ``# remaining positions any digit` `    ``# can be placed` `    ``if` `(repeated ``=``=` `True``):` `        ``return` `pow``(``10``, n ``-` `digit ``+` `1``)`   `    ``# If the current state has already` `    ``# been computed, then return it` `    ``val ``=` `dp[digit][mask][repeated]` `    ``if` `(val !``=` `-``1``):` `        ``return` `val`   `    ``# Stores the count of number for` `    ``# the current recursive calls` `    ``val ``=` `4`   `    ``# If current position is 1, then` `    ``# any digit can be placed.`   `    ``# If n = 1, 0 can be also placed` `    ``if` `(digit ``=``=` `1``):`   `        ``for` `i ``in` `range``((``0` `if` `(n``=``=``1``) ``else` `1``),``10``):` `            ``# If a digit has occurred` `            ``# for the second time, then` `            ``# set repeated to 1` `            ``if` `(mask & (``1` `<< i)):` `                ``val ``+``=` `countOfNumbers(digit ``+` `1``, mask | (``1` `<< i), ``1``, n)` `            ``# Otherwise` `        ``else``:` `                ``val ``+``=` `countOfNumbers(digit ``+` `1``, mask | (``1` `<< i), ``0``, n)`   `    ``# For remaining positions any` `    ``# digit can be placed` `    ``else``:` `        ``for` `i ``in` `range``(``10``):` `            ``# If a digit has occurred` `            ``# for the second time, then` `            ``# set repeated to 1` `            ``if` `(mask & (``1` `<< i)):` `                ``val ``+``=` `countOfNumbers(digit ``+` `1``, mask | (``1` `<< i), ``1``, n)` `        ``else``:` `                ``val ``+``=` `countOfNumbers(digit ``+` `1``, mask | (``1` `<< i), ``0``, n)`   `    ``# Return the resultant count for` `    ``# the current recursive call` `    ``dp[digit][mask][repeated] ``=` `val` `    ``return` `dp[digit][mask][repeated]`   `# Function to count all the N-digit` `# numbers having at least one digit's` `# occurrence more than once` `def` `countNDigitNumber(N):`   `    ``# Function to count all possible` `    ``# number satisfying the given` `    ``# criteria` `    ``print`  `(countOfNumbers(``1``, ``0``, ``0``, N))`   `# Driver Code` `if` `__name__ ``=``=` `'__main__'``:` `    ``N ``=` `2` `    ``countNDigitNumber(N)`   `# This code is contributed by mohit kumar 29.`

## C#

 `// C# program for the above approach` `using` `System;`   `class` `GFG{`   `public` `static` `int``[,,] dp = ``new` `int``[50, 1 << 10, 2];`   `// Function to find the number of N` `// digit numbers such that at least` `// one digit occurs more than once` `public` `static` `int` `countOfNumbers(``int` `digit, ``int` `mask,` `                                 ``int` `repeated, ``int` `n)` `{` `    `  `    ``// Base Case` `    ``if` `(digit == n + 1)` `    ``{` `        ``if` `(repeated == 1)` `        ``{` `            ``return` `1;` `        ``}` `        ``return` `0;` `    ``}`   `    ``// If repeated is true, then for` `    ``// remaining positions any digit` `    ``// can be placed` `    ``if` `(repeated == 1)` `    ``{` `        ``return``(``int``)Math.Pow(10, n - digit + 1);` `    ``}`   `    ``// If the current state has already` `    ``// been computed, then return it` `    ``int` `val = dp[digit, mask, repeated];` `    ``if` `(val != -1) ` `    ``{` `        ``return` `val;` `    ``}`   `    ``// Stores the count of number for` `    ``// the current recursive calls` `    ``val = 0;`   `    ``// If current position is 1, then` `    ``// any digit can be placed.`   `    ``// If n = 1, 0 can be also placed` `    ``if` `(digit == 1) ` `    ``{` `        ``for``(``int` `i = (n == 1 ? 0 : 1); i <= 9; ++i)` `        ``{` `            `  `            ``// If a digit has occurred` `            ``// for the second time, then` `            ``// set repeated to 1` `            ``if` `((mask & (1 << i)) > 0)` `            ``{` `                ``val += countOfNumbers(` `                    ``digit + 1, mask | (1 << i), 1, n);` `            ``}`   `            ``// Otherwise` `            ``else` `            ``{` `                ``val += countOfNumbers(` `                    ``digit + 1, mask | (1 << i), 0, n);` `            ``}` `        ``}` `    ``}`   `    ``// For remaining positions any` `    ``// digit can be placed` `    ``else` `    ``{` `        ``for``(``int` `i = 0; i <= 9; ++i)` `        ``{` `            `  `            ``// If a digit has occurred` `            ``// for the second time, then` `            ``// set repeated to 1` `            ``if` `((mask & (1 << i)) > 0) ` `            ``{` `                ``val += countOfNumbers(` `                    ``digit + 1, mask | (1 << i), 1, n);` `            ``}` `            ``else` `            ``{` `                ``val += countOfNumbers(` `                    ``digit + 1, mask | (1 << i), 0, n);` `            ``}` `        ``}` `    ``}`   `    ``// Return the resultant count for` `    ``// the current recursive call` `    ``return` `val;` `}`   `// Function to count all the N-digit` `// numbers having at least one digit's` `// occurrence more than once` `public` `static` `void` `countNDigitNumber(``int` `N)` `{` `    `  `    ``// Initialize dp array with -1` `    ``for``(``int` `i = 0; i < 50; i++) ` `    ``{` `        ``for``(``int` `j = 0; j < 1 << 10; j++)` `        ``{` `            ``for``(``int` `k = 0; k < 2; k++) ` `            ``{` `                ``dp[i, j, k] = -1;` `            ``}` `        ``}` `    ``}`   `    ``// Function to count all possible` `    ``// number satisfying the given` `    ``// criteria` `    ``Console.Write(countOfNumbers(1, 0, 0, N));` `}`   `// Driver Code` `public` `static` `void` `Main()` `{` `    ``int` `N = 2;` `    `  `    ``countNDigitNumber(N);` `}` `}`   `// This code is contributed by ukasp`

## Javascript

 ``

Output

```9

```

Time Complexity: O(10 * N * 210 * 2 )
Auxiliary Space: O(N * 210 * 2)