# Count of K length subsequence whose product is even

• Difficulty Level : Medium
• Last Updated : 05 May, 2021

Given an array arr[] and an integer K, the task is to find number of non empty subsequence of length K from the given array arr of size N such that the product of subsequence is a even number.
Example:

Input: arr[] = [2, 3, 1, 7], K = 3
Output:
Explanation:
There are 3 subsequences of length 3 whose product is even number {2, 3, 1}, {2, 3, 7}, {2, 1, 7}.
Input: arr[] = [2, 4], K = 1
Output:
Explanation:
There are 2 subsequence of length 1 whose product is even number {2} {4}.

Approach:
To solve the problem mentioned above we have to find the total number of subsequence of length K and subtract the count of K length subsequence whose product is odd.

1. For making a product of the subsequence odd we must choose K numbers as odd.
2. So the number of subsequences of length K whose product is odd is possibly finding k odd numbers, i.e., “o choose k” or where o is the count of odd numbers in the subsequence.
3. where n and o is the count of total numbers and odd numbers respectively.

Below is the implementation of above program:

## C++

 // C++ implementation to Count of K// length subsequence whose// Product is even #include using namespace std; int fact(int n); // Function to calculate nCrint nCr(int n, int r){    if (r > n)        return 0;    return fact(n)           / (fact(r)              * fact(n - r));} // Returns factorial of nint fact(int n){    int res = 1;    for (int i = 2; i <= n; i++)        res = res * i;    return res;} // Function for finding number// of K length subsequences// whose product is even numberint countSubsequences(    int arr[], int n, int k){    int countOdd = 0;     // counting odd numbers in the array    for (int i = 0; i < n; i++) {        if (arr[i] & 1)            countOdd++;    }    int ans = nCr(n, k)              - nCr(countOdd, k);     return ans;} // Driver codeint main(){     int arr[] = { 2, 4 };    int K = 1;     int N = sizeof(arr) / sizeof(arr);     cout << countSubsequences(arr, N, K);     return 0;}

## Java

 // Java implementation to count of K// length subsequence whose product// is evenimport java.util.*; class GFG{     // Function to calculate nCrstatic int nCr(int n, int r){    if (r > n)        return 0;    return fact(n) / (fact(r) *                      fact(n - r));} // Returns factorial of nstatic int fact(int n){    int res = 1;    for(int i = 2; i <= n; i++)        res = res * i;             return res;} // Function for finding number// of K length subsequences// whose product is even numberstatic int countSubsequences(int arr[],                             int n, int k){    int countOdd = 0;     // Counting odd numbers in the array    for(int i = 0; i < n; i++)    {        if (arr[i] % 2 == 1)            countOdd++;    }    int ans = nCr(n, k) - nCr(countOdd, k);     return ans;} // Driver codepublic static void main(String args[]){    int arr[] = { 2, 4 };    int K = 1;     int N = arr.length;     System.out.println(countSubsequences(arr, N, K));}} // This code is contributed by ANKITKUMAR34

## Python3

 # Python3 implementation to Count of K# length subsequence whose# Product is even # Function to calculate nCrdef nCr(n, r):         if (r > n):        return 0    return fact(n) // (fact(r) *                       fact(n - r)) # Returns factorial of ndef fact(n):         res = 1    for i in range(2, n + 1):        res = res * i             return res # Function for finding number# of K length subsequences# whose product is even numberdef countSubsequences(arr, n, k):         countOdd = 0     # Counting odd numbers in the array    for i in range(n):        if (arr[i] & 1):            countOdd += 1;     ans = nCr(n, k) - nCr(countOdd, k);     return ans     # Driver codearr = [ 2, 4 ]K = 1 N = len(arr) print(countSubsequences(arr, N, K)) # This code is contributed by ANKITKUAR34

## C#

 // C# implementation to count of K// length subsequence whose product// is evenusing System; class GFG{     // Function to calculate nCrstatic int nCr(int n, int r){    if (r > n)        return 0;             return fact(n) / (fact(r) *                      fact(n - r));} // Returns factorial of nstatic int fact(int n){    int res = 1;    for(int i = 2; i <= n; i++)        res = res * i;             return res;} // Function for finding number// of K length subsequences// whose product is even numberstatic int countSubsequences(int []arr,                             int n, int k){    int countOdd = 0;     // Counting odd numbers in the array    for(int i = 0; i < n; i++)    {        if (arr[i] % 2 == 1)            countOdd++;    }    int ans = nCr(n, k) - nCr(countOdd, k);     return ans;} // Driver codepublic static void Main(String []args){    int []arr = { 2, 4 };    int K = 1;     int N = arr.Length;     Console.WriteLine(countSubsequences(arr, N, K));}} // This code is contributed by Princi Singh

## Javascript

 

Output:

2

My Personal Notes arrow_drop_up