Count of K length subsequence whose product is even

Given an array arr[] and an integer K, the task is to find number of non empty subsequence of length K from the given array arr of size N such that the product of subsequence is a even number.
Example:

Input: arr[] = [2, 3, 1, 7], K = 3 
Output:
Explanation: 
There are 3 subsequences of length 3 whose product is even number {2, 3, 1}, {2, 3, 7}, {2, 1, 7}. 

Input: arr[] = [2, 4], K = 1 
Output:
Explanation: 
There are 2 subsequence of length 1 whose product is even number {2} {4}. 

Approach:
To solve the problem mentioned above we have to find the total number of subsequence of length K and subtract the count of K length subsequence whose product is odd. 

  1. For making a product of the subsequence odd we must choose K numbers as odd.
  2. So the number of subsequences of length K whose product is odd is possibly finding k odd numbers, i.e., “o choose k” or _{k}^{o}\textrm{C}
    where o is the count of odd numbers in the subsequence.
  3. \text{So count of a subsequence with even product = } _{k}^{n}\textrm{C} - _{k}^{o}\textrm{C}
    where n and o is the count of total numbers and odd numbers respectively.

Below is the implementation of above program: 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to Count of K
// length subsequence whose
// Product is even
  
#include <bits/stdc++.h>
using namespace std;
  
int fact(int n);
  
// Function to calculate nCr
int nCr(int n, int r)
{
    if (r > n)
        return 0;
    return fact(n)
           / (fact(r)
              * fact(n - r));
}
  
// Returns factorial of n
int fact(int n)
{
    int res = 1;
    for (int i = 2; i <= n; i++)
        res = res * i;
    return res;
}
  
// Function for finding number
// of K length subsequences
// whose product is even number
int countSubsequences(
    int arr[], int n, int k)
{
    int countOdd = 0;
  
    // counting odd numbers in the array
    for (int i = 0; i < n; i++) {
        if (arr[i] & 1)
            countOdd++;
    }
    int ans = nCr(n, k)
              - nCr(countOdd, k);
  
    return ans;
}
  
// Driver code
int main()
{
  
    int arr[] = { 2, 4 };
    int K = 1;
  
    int N = sizeof(arr) / sizeof(arr[0]);
  
    cout << countSubsequences(arr, N, K);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to count of K
// length subsequence whose product 
// is even
import java.util.*;
  
class GFG{
      
// Function to calculate nCr
static int nCr(int n, int r)
{
    if (r > n)
        return 0;
    return fact(n) / (fact(r) *
                      fact(n - r));
}
  
// Returns factorial of n
static int fact(int n)
{
    int res = 1;
    for(int i = 2; i <= n; i++)
        res = res * i;
          
    return res;
}
  
// Function for finding number
// of K length subsequences
// whose product is even number
static int countSubsequences(int arr[],
                             int n, int k)
{
    int countOdd = 0;
  
    // Counting odd numbers in the array
    for(int i = 0; i < n; i++)
    {
        if (arr[i] % 2 == 1)
            countOdd++;
    }
    int ans = nCr(n, k) - nCr(countOdd, k);
  
    return ans;
}
  
// Driver code
public static void main(String args[])
{
    int arr[] = { 2, 4 };
    int K = 1;
  
    int N = arr.length;
  
    System.out.println(countSubsequences(arr, N, K));
}
}
  
// This code is contributed by ANKITKUMAR34

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to Count of K
# length subsequence whose
# Product is even
  
# Function to calculate nCr
def nCr(n, r):
      
    if (r > n):
        return 0
    return fact(n) // (fact(r) * 
                       fact(n - r))
  
# Returns factorial of n
def fact(n):
      
    res = 1
    for i in range(2, n + 1):
        res = res * i
          
    return res
  
# Function for finding number
# of K length subsequences
# whose product is even number
def countSubsequences(arr, n, k):
      
    countOdd = 0
  
    # Counting odd numbers in the array
    for i in range(n):
        if (arr[i] & 1):
            countOdd += 1;
  
    ans = nCr(n, k) - nCr(countOdd, k);
  
    return ans
      
# Driver code
arr = [ 2, 4 ]
K = 1
  
N = len(arr)
  
print(countSubsequences(arr, N, K))
  
# This code is contributed by ANKITKUAR34

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to count of K
// length subsequence whose product 
// is even
using System;
  
class GFG{
      
// Function to calculate nCr
static int nCr(int n, int r)
{
    if (r > n)
        return 0;
          
    return fact(n) / (fact(r) *
                      fact(n - r));
}
  
// Returns factorial of n
static int fact(int n)
{
    int res = 1;
    for(int i = 2; i <= n; i++)
        res = res * i;
          
    return res;
}
  
// Function for finding number
// of K length subsequences
// whose product is even number
static int countSubsequences(int []arr,
                             int n, int k)
{
    int countOdd = 0;
  
    // Counting odd numbers in the array
    for(int i = 0; i < n; i++)
    {
        if (arr[i] % 2 == 1)
            countOdd++;
    }
    int ans = nCr(n, k) - nCr(countOdd, k);
  
    return ans;
}
  
// Driver code
public static void Main(String []args)
{
    int []arr = { 2, 4 };
    int K = 1;
  
    int N = arr.Length;
  
    Console.WriteLine(countSubsequences(arr, N, K));
}
}
  
// This code is contributed by Princi Singh

chevron_right


Output: 

2

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : ANKITKUMAR34, princi singh