Skip to content
Related Articles

Related Articles

Improve Article

Count of integral coordinates that lies inside a Square

  • Last Updated : 13 Apr, 2021

Given lower left and upper right coordinates (x1, y1) and (x2, y2) of a square, the task is to count the number of integral coordinates that lies strictly inside the square.
Examples: 
 

Input: x1 = 1, y1 = 1, x2 = 5, x3 = 5 
Output:
Explanation: 
Below is the square for the given coordinates: 
 

Input: x1 = 1, y1 = 1, x2 = 4, x3 = 4 
Output:
 

 



Approach: The difference between the x and y ordinates of the lower and upper right coordinates of the given squares gives the number integral points of x ordinates and y ordinates between opposite sides of square respectively. The total number of points that strictly lies inside the square is given by: 
 

count = (x2 – x1 – 1) * (y2 – y1 – 1) 
 

For Example: 
 

In the above figure: 
1. The total number of integral points inside base of the square is (x2 – x1 – 1)
2. The total number of integral points inside height of the square is (y2 – y1 – 1)
These (x2 – x1 – 1) integrals points parallel to the base of the square repeats (y2 – y1 – 1) number of times. Therefore the total number of integral points is given by (x2 – x1 – 1)*(y2 – y1 – 1)
 

Below is the implementation of the above approach: 
 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the integral
// points inside a square
void countIntgralPoints(int x1, int y1,
                        int x2, int y2)
{
    cout << (y2 - y1 - 1) * (x2 - x1 - 1);
}
 
// Driver Code
int main()
{
    int x1 = 1, y1 = 1;
    int x2 = 4, y2 = 4;
 
    countIntgralPoints(x1, y1, x2, y2);
    return 0;
}

Java




// Java program for the above approach
 
class GFG {
 
// Function to calculate the integral
// points inside a square
static void countIntgralPoints(int x1, int y1,
                               int x2, int y2)
{
    System.out.println((y2 - y1 - 1) *
                       (x2 - x1 - 1));
}
 
// Driver Code
public static void main(String args[])
{
    int x1 = 1, y1 = 1;
    int x2 = 4, y2 = 4;
     
    countIntgralPoints(x1, y1, x2, y2);
}
}
 
// This code is contributed by rutvik_56

Python3




# Python3 program for the above approach
 
# Function to calculate the integral
# points inside a square
def countIntgralPoints(x1, y1, x2, y2):
    print((y2 - y1 - 1) * (x2 - x1 - 1))
 
# Driver Code
if __name__ == '__main__':
 
    x1 = 1
    y1 = 1
    x2 = 4
    y2 = 4
 
    countIntgralPoints(x1, y1, x2, y2)
 
# This code is contributed by Samarth

C#




// C# program for the above approach
using System;
 
class GFG{
     
// Function to calculate the integral
// points inside a square
static void countIntgralPoints(int x1, int y1,
                               int x2, int y2)
{
    Console.WriteLine((y2 - y1 - 1) *
                      (x2 - x1 - 1));
}
 
// Driver code
static void Main()
{
    int x1 = 1, y1 = 1;
    int x2 = 4, y2 = 4;
     
    countIntgralPoints(x1, y1, x2, y2);
}
}
 
// This code is contributed by divyeshrabadiya07   

Javascript




<script>
 
// Javascript program for the above approach
 
// Function to calculate the integral
// points inside a square
function countIntgralPoints(x1, y1, x2, y2)
{
    document.write( (y2 - y1 - 1) * (x2 - x1 - 1));
}
 
// Driver Code
 
var x1 = 1, y1 = 1;
var x2 = 4, y2 = 4;
 
countIntgralPoints(x1, y1, x2, y2);
 
</script>
Output: 
4

 

Time Complexity: O(1) 
 

Attention reader! Don’t stop learning now. Participate in the Scholorship Test for First-Step-to-DSA Course for Class 9 to 12 students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :