Given N number of people, the task is to count the number of ways to form groups of size? N where, in each group, the first element of the group is the leader of the group.
Note:
- Groups with same people having different leaders are treated as a different group. For Example: The group {1, 2, 3} and {2, 1, 3} are treated as different group as they have different leader 1 and 2 respectively.
- Groups with same leader having same people are treated as a same group. For Example: The groups {1, 3, 2} and {1, 2, 3} are treated as same group as they have same leader and same people.
- The answer can be very large, take modulo to (1e9+7).
Examples:
Input: N = 3
Output: 12
Explanation:
Total Groups with leaders are:
Groups with Leader 1:
1. {1}
2. {1, 2}
3. {1, 3}
4. {1, 2, 3}
Groups with Leader 2:
5. {2}
6. {2, 1}
7. {2, 3}
8. {2, 1, 3}
Groups with Leader 3:
9. {3}
10. {3, 1}
11. {3, 2}
12. {3, 1, 2}
Input: N = 5
Output: 80
Approach: This problem can be solved using the concept of Binomial coefficients and modular exponentiation. Below are the observations to this problem statement:
- The number of ways to select one leader among N persons is C(N, 1).
- For every leader we can select a group of size K where 0 ? K ? N-1 to make the possible number of grouping.
- So the total number ways is given by the product of N and the summation of selection K elements from the remaining (N – 1) elements as:
Total Ways = 
By using Binomial Theorem, the summation of the Binomial Coefficient can be written as:

Therefore the number of ways of selecting groups having only one leader is

Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
long long mod = 1000000007;
int exponentMod( int A, int B)
{
if (A == 0)
return 0;
if (B == 0)
return 1;
long long y;
if (B % 2 == 0) {
y = exponentMod(A, B / 2);
y = (y * y) % mod;
}
else {
y = A % mod;
y = (y * exponentMod(A, B - 1)
% mod)
% mod;
}
return ( int )((y + mod) % mod);
}
void countWays( int N)
{
long long select = exponentMod(2,
N - 1);
long long ways
= ((N % mod)
* (select % mod));
ways %= mod;
cout << ways;
}
int main()
{
int N = 5;
countWays(N);
}
|
Java
import java.util.*;
class GFG{
static long mod = 1000000007 ;
static int exponentMod( int A, int B)
{
if (A == 0 )
return 0 ;
if (B == 0 )
return 1 ;
long y;
if (B % 2 == 0 )
{
y = exponentMod(A, B / 2 );
y = (y * y) % mod;
}
else
{
y = A % mod;
y = (y * exponentMod(A, B - 1 ) %
mod) % mod;
}
return ( int )((y + mod) % mod);
}
static void countWays( int N)
{
long select = exponentMod( 2 , N - 1 );
long ways = ((N % mod) * (select % mod));
ways %= mod;
System.out.print(ways);
}
public static void main(String[] args)
{
int N = 5 ;
countWays(N);
}
}
|
Python3
mod = 1000000007
def exponentMod(A, B):
if (A = = 0 ):
return 0 ;
if (B = = 0 ):
return 1 ;
y = 0 ;
if (B % 2 = = 0 ):
y = exponentMod(A, B / / 2 );
y = (y * y) % mod;
else :
y = A % mod;
y = (y * exponentMod(A, B - 1 ) %
mod) % mod;
return ((y + mod) % mod);
def countWays(N):
select = exponentMod( 2 , N - 1 );
ways = ((N % mod) * (select % mod));
ways % = mod;
print (ways)
if __name__ = = '__main__' :
N = 5 ;
countWays(N);
|
C#
using System;
class GFG{
static long mod = 1000000007;
static int exponentMod( int A, int B)
{
if (A == 0)
return 0;
if (B == 0)
return 1;
long y;
if (B % 2 == 0)
{
y = exponentMod(A, B / 2);
y = (y * y) % mod;
}
else
{
y = A % mod;
y = (y * exponentMod(A, B - 1) %
mod) % mod;
}
return ( int )((y + mod) % mod);
}
static void countWays( int N)
{
long select = exponentMod(2, N - 1);
long ways = ((N % mod) * ( select % mod));
ways %= mod;
Console.Write(ways);
}
public static void Main(String[] args)
{
int N = 5;
countWays(N);
}
}
|
Javascript
<script>
let mod = 1000000007;
function exponentMod(A, B)
{
if (A == 0)
return 0;
if (B == 0)
return 1;
let y;
if (B % 2 == 0) {
y = exponentMod(A, B / 2);
y = (y * y) % mod;
}
else {
y = A % mod;
y = (y * exponentMod(A, B - 1)
% mod)
% mod;
}
return ((y + mod) % mod);
}
function countWays(N)
{
let select = exponentMod(2,
N - 1);
let ways
= ((N % mod)
* (select % mod));
ways %= mod;
document.write(ways);
}
let N = 5;
countWays(N);
</script>
|
Time Complexity: O(log N)
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!