Related Articles
Count of groups among N people having only one leader in each group
• Last Updated : 06 May, 2021

Given N number of people, the task is to count the number of ways to form groups of size? N where, in each group, the first element of the group is the leader of the group.
Note:

• Groups with same people having different leaders are treated as a different group. For Example: The group {1, 2, 3} and {2, 1, 3} are treated as different group as they have different leader 1 and 2 respectively.
• Groups with same leader having same people are treated as a same group. For Example: The groups {1, 3, 2} and {1, 2, 3} are treated as same group as they have same leader and same people.
• The answer can be very large, take modulo to (1e9+7).

Examples:

Input: N = 3
Output: 12
Explanation:
1. {1}
2. {1, 2}
3. {1, 3}
4. {1, 2, 3}
5. {2}
6. {2, 1}
7. {2, 3}
8. {2, 1, 3}
9. {3}
10. {3, 1}
11. {3, 2}
12. {3, 1, 2}
Input: N = 5
Output: 80

Approach: This problem can be solved using the concept of Binomial coefficients and modular exponentiation. Below are the observations to this problem statement:

• The number of ways to select one leader among N persons is C(N, 1).
• For every leader we can select a group of size K where 0 ≤ K ≤ N-1 to make the possible number of grouping.
• So the total number ways is given by the product of N and the summation of selection K elements from the remaining (N – 1) elements as:

Total Ways = By using Binomial Theorem, the summation of the Binomial Coefficient can be written as: Therefore the number of ways of selecting groups having only one leader is Below is the implementation of the above approach:

## C++

 // C++ program for the above approach  #include using namespace std;  long long mod = 1000000007;  // Function to find 2^x using// modular exponentiationint exponentMod(int A, int B){    // Base cases    if (A == 0)        return 0;    if (B == 0)        return 1;      // If B is even    long long y;    if (B % 2 == 0) {        y = exponentMod(A, B / 2);        y = (y * y) % mod;    }      // If B is odd    else {        y = A % mod;        y = (y * exponentMod(A, B - 1)             % mod)            % mod;    }      return (int)((y + mod) % mod);}  // Function to count the number of// ways to form the group having// one leadervoid countWays(int N){      // Find 2^(N-1) using modular    // exponentiation    long long select = exponentMod(2,                                   N - 1);      // Count total ways    long long ways        = ((N % mod)           * (select % mod));      ways %= mod;      // Print the total ways    cout << ways;}  // Driver Codeint main(){      // Given N number of peoples    int N = 5;      // Function Call    countWays(N);}

## Java

 // Java program for the above approachimport java.util.*;class GFG{  static long mod = 1000000007;  // Function to find 2^x using// modular exponentiationstatic int exponentMod(int A, int B){    // Base cases    if (A == 0)        return 0;    if (B == 0)        return 1;      // If B is even    long y;    if (B % 2 == 0)     {        y = exponentMod(A, B / 2);        y = (y * y) % mod;    }      // If B is odd    else     {        y = A % mod;        y = (y * exponentMod(A, B - 1) %                                   mod) % mod;    }      return (int)((y + mod) % mod);}  // Function to count the number of// ways to form the group having// one leaderstatic void countWays(int N){      // Find 2^(N-1) using modular    // exponentiation    long select = exponentMod(2, N - 1);      // Count total ways    long ways = ((N % mod) * (select % mod));      ways %= mod;      // Print the total ways    System.out.print(ways);}  // Driver Codepublic static void main(String[] args){      // Given N number of peoples    int N = 5;      // Function Call    countWays(N);}}  // This code is contributed by sapnasingh4991

## Python3

 # Python3 program for the above approachmod = 1000000007  # Function to find 2^x using# modular exponentiationdef exponentMod(A, B):          # Base cases    if (A == 0):        return 0;    if (B == 0):        return 1;      # If B is even    y = 0;          if (B % 2 == 0):        y = exponentMod(A, B // 2);        y = (y * y) % mod;      # If B is odd    else:        y = A % mod;        y = (y * exponentMod(A, B - 1) %                                  mod) % mod;                                   return ((y + mod) % mod);  # Function to count the number of# ways to form the group having# one leaderdef countWays(N):          # Find 2^(N-1) using modular    # exponentiation    select = exponentMod(2, N - 1);      # Count total ways    ways = ((N % mod) * (select % mod));      ways %= mod;      # Print the total ways    print(ways)      # Driver code        if __name__=='__main__':          # Given N number of people    N = 5;      # Function call    countWays(N);  # This code is contributed by rutvik_56

## C#

 // C# program for the above approachusing System;class GFG{   static long mod = 1000000007;   // Function to find 2^x using// modular exponentiationstatic int exponentMod(int A, int B){    // Base cases    if (A == 0)        return 0;    if (B == 0)        return 1;       // If B is even    long y;    if (B % 2 == 0)     {        y = exponentMod(A, B / 2);        y = (y * y) % mod;    }       // If B is odd    else    {        y = A % mod;        y = (y * exponentMod(A, B - 1) %                                   mod) % mod;    }       return (int)((y + mod) % mod);}   // Function to count the number of// ways to form the group having// one leaderstatic void countWays(int N){       // Find 2^(N-1) using modular    // exponentiation    long select = exponentMod(2, N - 1);       // Count total ways    long ways = ((N % mod) * (select % mod));       ways %= mod;       // Print the total ways    Console.Write(ways);}   // Driver Codepublic static void Main(String[] args){       // Given N number of peoples    int N = 5;       // Function Call    countWays(N);}}  // This code is contributed by sapnasingh4991

## Javascript

 
Output:
80

Time Complexity: O(log N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live and Geeks Classes Live USA

My Personal Notes arrow_drop_up