Open In App
Related Articles

Count of groups among N people having only one leader in each group

Improve Article
Improve
Save Article
Save
Like Article
Like

Given N number of people, the task is to count the number of ways to form groups of size? N where, in each group, the first element of the group is the leader of the group.
Note:

  • Groups with same people having different leaders are treated as a different group. For Example: The group {1, 2, 3} and {2, 1, 3} are treated as different group as they have different leader 1 and 2 respectively.
  • Groups with same leader having same people are treated as a same group. For Example: The groups {1, 3, 2} and {1, 2, 3} are treated as same group as they have same leader and same people.
  • The answer can be very large, take modulo to (1e9+7).

Examples:

Input: N = 3 
Output: 12 
Explanation: 
Total Groups with leaders are: 
Groups with Leader 1: 
1. {1} 
2. {1, 2} 
3. {1, 3} 
4. {1, 2, 3} 
Groups with Leader 2: 
5. {2} 
6. {2, 1} 
7. {2, 3} 
8. {2, 1, 3} 
Groups with Leader 3: 
9. {3} 
10. {3, 1} 
11. {3, 2} 
12. {3, 1, 2}
Input: N = 5 
Output: 80

Approach: This problem can be solved using the concept of Binomial coefficients and modular exponentiation. Below are the observations to this problem statement:

  • The number of ways to select one leader among N persons is C(N, 1).
  • For every leader we can select a group of size K where 0 ? K ? N-1 to make the possible number of grouping.
  • So the total number ways is given by the product of N and the summation of selection K elements from the remaining (N – 1) elements as:

Total Ways = \binom{N}{1} * \left ( \binom{N-1}{0} + \binom{N-1}{1} + \binom{N-1}{2} + ... + \binom{N-1}{N-1} \right )

By using Binomial Theorem, the summation of the Binomial Coefficient can be written as:

\binom{N}{1} * \left ( \binom{N-1}{0} + \binom{N-1}{1} + \binom{N-1}{2} + ... + \binom{N-1}{N-1} \right ) = 2^{N-1}

Therefore the number of ways of selecting groups having only one leader is

N * 2^{N - 1}

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
long long mod = 1000000007;
 
// Function to find 2^x using
// modular exponentiation
int exponentMod(int A, int B)
{
    // Base cases
    if (A == 0)
        return 0;
    if (B == 0)
        return 1;
 
    // If B is even
    long long y;
    if (B % 2 == 0) {
        y = exponentMod(A, B / 2);
        y = (y * y) % mod;
    }
 
    // If B is odd
    else {
        y = A % mod;
        y = (y * exponentMod(A, B - 1)
             % mod)
            % mod;
    }
 
    return (int)((y + mod) % mod);
}
 
// Function to count the number of
// ways to form the group having
// one leader
void countWays(int N)
{
 
    // Find 2^(N-1) using modular
    // exponentiation
    long long select = exponentMod(2,
                                   N - 1);
 
    // Count total ways
    long long ways
        = ((N % mod)
           * (select % mod));
 
    ways %= mod;
 
    // Print the total ways
    cout << ways;
}
 
// Driver Code
int main()
{
 
    // Given N number of peoples
    int N = 5;
 
    // Function Call
    countWays(N);
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
static long mod = 1000000007;
 
// Function to find 2^x using
// modular exponentiation
static int exponentMod(int A, int B)
{
    // Base cases
    if (A == 0)
        return 0;
    if (B == 0)
        return 1;
 
    // If B is even
    long y;
    if (B % 2 == 0)
    {
        y = exponentMod(A, B / 2);
        y = (y * y) % mod;
    }
 
    // If B is odd
    else
    {
        y = A % mod;
        y = (y * exponentMod(A, B - 1) %
                                  mod) % mod;
    }
 
    return (int)((y + mod) % mod);
}
 
// Function to count the number of
// ways to form the group having
// one leader
static void countWays(int N)
{
 
    // Find 2^(N-1) using modular
    // exponentiation
    long select = exponentMod(2, N - 1);
 
    // Count total ways
    long ways = ((N % mod) * (select % mod));
 
    ways %= mod;
 
    // Print the total ways
    System.out.print(ways);
}
 
// Driver Code
public static void main(String[] args)
{
 
    // Given N number of peoples
    int N = 5;
 
    // Function Call
    countWays(N);
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program for the above approach
mod = 1000000007
 
# Function to find 2^x using
# modular exponentiation
def exponentMod(A, B):
     
    # Base cases
    if (A == 0):
        return 0;
    if (B == 0):
        return 1;
 
    # If B is even
    y = 0;
     
    if (B % 2 == 0):
        y = exponentMod(A, B // 2);
        y = (y * y) % mod;
 
    # If B is odd
    else:
        y = A % mod;
        y = (y * exponentMod(A, B - 1) %
                                  mod) % mod;
                              
    return ((y + mod) % mod);
 
# Function to count the number of
# ways to form the group having
# one leader
def countWays(N):
     
    # Find 2^(N-1) using modular
    # exponentiation
    select = exponentMod(2, N - 1);
 
    # Count total ways
    ways = ((N % mod) * (select % mod));
 
    ways %= mod;
 
    # Print the total ways
    print(ways)
     
# Driver code       
if __name__=='__main__':
     
    # Given N number of people
    N = 5;
 
    # Function call
    countWays(N);
 
# This code is contributed by rutvik_56


C#




// C# program for the above approach
using System;
class GFG{
  
static long mod = 1000000007;
  
// Function to find 2^x using
// modular exponentiation
static int exponentMod(int A, int B)
{
    // Base cases
    if (A == 0)
        return 0;
    if (B == 0)
        return 1;
  
    // If B is even
    long y;
    if (B % 2 == 0)
    {
        y = exponentMod(A, B / 2);
        y = (y * y) % mod;
    }
  
    // If B is odd
    else
    {
        y = A % mod;
        y = (y * exponentMod(A, B - 1) %
                                  mod) % mod;
    }
  
    return (int)((y + mod) % mod);
}
  
// Function to count the number of
// ways to form the group having
// one leader
static void countWays(int N)
{
  
    // Find 2^(N-1) using modular
    // exponentiation
    long select = exponentMod(2, N - 1);
  
    // Count total ways
    long ways = ((N % mod) * (select % mod));
  
    ways %= mod;
  
    // Print the total ways
    Console.Write(ways);
}
  
// Driver Code
public static void Main(String[] args)
{
  
    // Given N number of peoples
    int N = 5;
  
    // Function Call
    countWays(N);
}
}
 
// This code is contributed by sapnasingh4991


Javascript




<script>
 
// Javascript program for the above approach
 
let mod = 1000000007;
 
// Function to find 2^x using
// modular exponentiation
function exponentMod(A, B)
{
    // Base cases
    if (A == 0)
        return 0;
    if (B == 0)
        return 1;
 
    // If B is even
    let y;
    if (B % 2 == 0) {
        y = exponentMod(A, B / 2);
        y = (y * y) % mod;
    }
 
    // If B is odd
    else {
        y = A % mod;
        y = (y * exponentMod(A, B - 1)
            % mod)
            % mod;
    }
 
    return ((y + mod) % mod);
}
 
// Function to count the number of
// ways to form the group having
// one leader
function countWays(N)
{
 
    // Find 2^(N-1) using modular
    // exponentiation
    let select = exponentMod(2,
                                N - 1);
 
    // Count total ways
    let ways
        = ((N % mod)
        * (select % mod));
 
    ways %= mod;
 
    // Print the total ways
    document.write(ways);
}
 
// Driver Code
 
    // Given N number of peoples
    let N = 5;
 
    // Function Call
    countWays(N);
 
// This code is contributed by Mayank Tyagi
 
</script>


Output: 

80

 

Time Complexity: O(log N) 
Auxiliary Space: O(N)
 

 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 26 Feb, 2023
Like Article
Save Article
Similar Reads
Related Tutorials