# Distribute N candies among K people

Given N candies and K people. In the first turn, the first person gets 1 candy, the second gets 2 candies, and so on till K people. In the next turn, the first person gets K+1 candies, the second person gets k+2 candies, and so on. If the number of candies is less than the required number of candies at every turn, then the person receives the remaining number of candies.
The task is to find the total number of candies every person has at the end.
Examples:

Input: N = 7, K = 4
Output: 1 2 3 1
At the first turn, the fourth people has to be given 4 candies, but there is
only 1 left, hence he takes one only.

Input: N = 10, K = 3
Output: 5 2 3
At the second turn first one receives 4 and then we have no more candies left.

A naive approach is to iterate for every turn and distribute candies accordingly till candies are finished.
Time complexity: O(Number of distributions)
A better approach is to perform every turn in O(1) by calculating sum of natural numbers till the last term of series which will be (turns*k) and subtracting the sum of natural numbers till the last term of previous series which is (turns-1)*k. Keep doing this till the sum is less than N, once it exceeds then distribute candies in the given way till possible. We call a turn completed if every person gets the desired number of candies he is to get in a turn.
Below is the implementation of the above approach:

## C++

 `// C++ code for better approach` `// to distribute candies` `#include ` `using` `namespace` `std;`   `// Function to find out the number of` `// candies every person received` `void` `candies(``int` `n, ``int` `k)` `{`   `    ``// Count number of complete turns` `    ``int` `count = 0;`   `    ``// Get the last term` `    ``int` `ind = 1;`   `    ``// Stores the number of candies` `    ``int` `arr[k];`   `    ``memset``(arr, 0, ``sizeof``(arr));`   `    ``while` `(n) {`   `        ``// Last term of last and` `        ``// current series` `        ``int` `f1 = (ind - 1) * k;` `        ``int` `f2 = ind * k;`   `        ``// Sum of current and last  series` `        ``int` `sum1 = (f1 * (f1 + 1)) / 2;` `        ``int` `sum2 = (f2 * (f2 + 1)) / 2;`   `        ``// Sum of current series only` `        ``int` `res = sum2 - sum1;`   `        ``// If sum of current is less than N` `        ``if` `(res <= n) {` `            ``count++;` `            ``n -= res;` `            ``ind++;` `        ``}` `        ``else` `// Individually distribute` `        ``{` `            ``int` `i = 0;`   `            ``// First term` `            ``int` `term = ((ind - 1) * k) + 1;`   `            ``// Distribute candies till there` `            ``while` `(n > 0) {`   `                ``// Candies available` `                ``if` `(term <= n) {` `                    ``arr[i++] = term;` `                    ``n -= term;` `                    ``term++;` `                ``}` `                ``else` `// Not available` `                ``{` `                    ``arr[i++] = n;` `                    ``n = 0;` `                ``}` `            ``}` `        ``}` `    ``}`   `    ``// Count the total candies` `    ``for` `(``int` `i = 0; i < k; i++)` `        ``arr[i] += (count * (i + 1)) ` `                ``+ (k * (count * (count - 1)) / 2);`   `    ``// Print the total candies` `    ``for` `(``int` `i = 0; i < k; i++)` `        ``cout << arr[i] << ``" "``;` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `n = 10, k = 3;` `    ``candies(n, k);`   `    ``return` `0;` `}`

## Java

 `// Java  code for better approach` `// to distribute candies`   `class` `GFG {` `    ``// Function to find out the number of` `    ``// candies every person received` `    ``static` `void` `candies(``int` `n, ``int` `k){` `        ``int``[] arr = ``new` `int``[k];` `        ``int` `j = ``0``;` `        ``while``(n>``0``){` `            `  `            ``for``(``int` `i =``0``;i

## Python3

 `# Python3 code for better approach` `# to distribute candies` `import` `math as mt`   `# Function to find out the number of` `# candies every person received` `def` `candies(n, k):`   `    ``# Count number of complete turns` `    ``count ``=` `0`   `    ``# Get the last term` `    ``ind ``=` `1`   `    ``# Stores the number of candies` `    ``arr ``=` `[``0` `for` `i ``in` `range``(k)]`   `    ``while` `n > ``0``:`   `        ``# Last term of last and` `        ``# current series` `        ``f1 ``=` `(ind ``-` `1``) ``*` `k` `        ``f2 ``=` `ind ``*` `k`   `        ``# Sum of current and last series` `        ``sum1 ``=` `(f1 ``*` `(f1 ``+` `1``)) ``/``/` `2` `        ``sum2 ``=` `(f2 ``*` `(f2 ``+` `1``)) ``/``/``2`   `        ``# Sum of current series only` `        ``res ``=` `sum2 ``-` `sum1`   `        ``# If sum of current is less than N` `        ``if` `(res <``=` `n):` `            ``count ``+``=` `1` `            ``n ``-``=` `res` `            ``ind ``+``=` `1` `        ``else``: ``# Individually distribute` `            ``i ``=` `0`   `            ``# First term` `            ``term ``=` `((ind ``-` `1``) ``*` `k) ``+` `1`   `            ``# Distribute candies till there` `            ``while` `(n > ``0``):`   `                ``# Candies available` `                ``if` `(term <``=` `n):` `                    ``arr[i] ``=` `term` `                    ``i ``+``=` `1` `                    ``n ``-``=` `term` `                    ``term ``+``=` `1` `                ``else``:` `                    ``arr[i] ``=` `n` `                    ``i ``+``=` `1` `                    ``n ``=` `0`   `    ``# Count the total candies` `    ``for` `i ``in` `range``(k):` `        ``arr[i] ``+``=` `((count ``*` `(i ``+` `1``)) ``+` `                   ``(k ``*` `(count ``*` `(count ``-` `1``)) ``/``/` `2``))`   `    ``# Print the total candies` `    ``for` `i ``in` `range``(k):` `        ``print``(arr[i], end ``=` `" "``)`   `# Driver Code` `n, k ``=` `10``, ``3` `candies(n, k)`   `# This code is contributed by Mohit kumar`

## C#

 `// C# code for better approach` `// to distribute candies`   `using` `System;` `class` `GFG` `{` `    ``// Function to find out the number of` `    ``// candies every person received` `    ``static` `void` `candies(``int` `n, ``int` `k)` `    ``{` `    `  `        ``// Count number of complete turns` `        ``int` `count = 0;` `    `  `        ``// Get the last term` `        ``int` `ind = 1;` `    `  `        ``// Stores the number of candies` `        ``int` `[]arr=``new` `int``[k];` `    `  `        ``for``(``int` `i=0;i0) {` `    `  `            ``// Last term of last and` `            ``// current series` `            ``int` `f1 = (ind - 1) * k;` `            ``int` `f2 = ind * k;` `    `  `            ``// Sum of current and last series` `            ``int` `sum1 = (f1 * (f1 + 1)) / 2;` `            ``int` `sum2 = (f2 * (f2 + 1)) / 2;` `    `  `            ``// Sum of current series only` `            ``int` `res = sum2 - sum1;` `    `  `            ``// If sum of current is less than N` `            ``if` `(res <= n) {` `                ``count++;` `                ``n -= res;` `                ``ind++;` `            ``}` `            ``else` `// Individually distribute` `            ``{` `                ``int` `i = 0;` `    `  `                ``// First term` `                ``int` `term = ((ind - 1) * k) + 1;` `    `  `                ``// Distribute candies till there` `                ``while` `(n > 0) {` `    `  `                    ``// Candies available` `                    ``if` `(term <= n) {` `                        ``arr[i++] = term;` `                        ``n -= term;` `                        ``term++;` `                    ``}` `                    ``else` `// Not available` `                    ``{` `                        ``arr[i++] = n;` `                        ``n = 0;` `                    ``}` `                ``}` `            ``}` `        ``}` `    `  `        ``// Count the total candies` `        ``for` `(``int` `i = 0; i < k; i++)` `            ``arr[i] += (count * (i + 1)) ` `                    ``+ (k * (count * (count - 1)) / 2);` `    `  `        ``// Print the total candies` `        ``for` `(``int` `i = 0; i < k; i++)` `            ``Console.Write( arr[i] + ``" "``);` `    ``}` `    `  `    ``// Driver Code` `    ``public` `static` `void` `Main()` `    ``{` `        ``int` `n = 10, k = 3;` `        ``candies(n, k);` `    `  `        `  `    ``}` `}`     `// This code is contributed by ihritik`

## PHP

 ` 0) ` `            ``{ `   `                ``// Candies available ` `                ``if` `(``\$term` `<= ``\$n``) ` `                ``{ ` `                    ``\$arr``[``\$i``++] = ``\$term``; ` `                    ``\$n` `-= ``\$term``; ` `                    ``\$term``++; ` `                ``} ` `                ``else` `// Not available ` `                ``{ ` `                    ``\$arr``[``\$i``++] = ``\$n``; ` `                    ``\$n` `= 0; ` `                ``} ` `            ``} ` `        ``} ` `    ``} `   `    ``// Count the total candies ` `    ``for` `(``\$i` `= 0; ``\$i` `< ``\$k``; ``\$i``++) ` `        ``\$arr``[``\$i``] += ``floor``((``\$count` `* (``\$i` `+ 1)) + (``\$k` `*` `                          ``(``\$count` `* (``\$count` `- 1)) / 2)); `   `    ``// Print the total candies ` `    ``for` `(``\$i` `= 0; ``\$i` `< ``\$k``; ``\$i``++) ` `        ``echo` `\$arr``[``\$i``], ``" "``;` `} `   `// Driver Code ` `\$n` `= 10;` `\$k` `= 3; ` `candies(``\$n``, ``\$k``);`   `// This code is contributed by Ryuga` `?>`

## Javascript

 ``

Output:

`5 2 3`

Time complexity: O(Number of turns + K)
Auxiliary Space: O(k)
An efficient approach is to find the largest number(say MAXI) whose sum upto natural numbers is less than N using Binary search. Since the last number will always be a multiple of K, we get the last number of complete turns. Subtract the summation till then from N. Distribute the remaining candies by traversing in the array.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the above approach` `#include ` `using` `namespace` `std;`   `// Function to find out the number of` `// candies every person received` `void` `candies(``int` `n, ``int` `k)` `{`   `    ``// Count number of complete turns` `    ``int` `count = 0;`   `    ``// Get the last term` `    ``int` `ind = 1;`   `    ``// Stores the number of candies` `    ``int` `arr[k];`   `    ``memset``(arr, 0, ``sizeof``(arr));`   `    ``int` `low = 0, high = n;`   `    ``// Do a binary search to find the number whose` `    ``// sum is less than N.` `    ``while` `(low <= high) {`   `        ``// Get mide` `        ``int` `mid = (low + high) >> 1;` `        ``int` `sum = (mid * (mid + 1)) >> 1;`   `        ``// If sum is below N` `        ``if` `(sum <= n) {`   `            ``// Find number of complete turns` `            ``count = mid / k;`   `            ``// Right halve` `            ``low = mid + 1;` `        ``}` `        ``else` `{`   `            ``// Left halve` `            ``high = mid - 1;` `        ``}` `    ``}`   `    ``// Last term of last complete series` `    ``int` `last = (count * k);`   `    ``// Subtract the sum till` `    ``n -= (last * (last + 1)) / 2;`   `    ``int` `i = 0;`   `    ``// First term of incomplete series` `    ``int` `term = (count * k) + 1;`   `    ``while` `(n) {` `        ``if` `(term <= n) {` `            ``arr[i++] = term;` `            ``n -= term;` `            ``term++;` `        ``}` `        ``else` `{` `            ``arr[i] += n;` `            ``n = 0;` `        ``}` `    ``}`   `    ``// Count the total candies` `    ``for` `(``int` `i = 0; i < k; i++)` `        ``arr[i] += (count * (i + 1))` `               ``+ (k * (count * (count - 1)) / 2);`   `    ``// Print the total candies` `    ``for` `(``int` `i = 0; i < k; i++)` `        ``cout << arr[i] << ``" "``;` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `n = 7, k = 4;` `    ``candies(n, k);`   `    ``return` `0;` `}`

## Java

 `// Java implementation of the above approach`   `class` `GFG` `{` `    ``// Function to find out the number of` `    ``// candies every person received` `    ``static` `void` `candies(``int` `n, ``int` `k)` `    ``{` `    `  `        ``// Count number of complete turns` `        ``int` `count = ``0``;` `    `  `        ``// Get the last term` `        ``int` `ind = ``1``;` `    `  `        ``// Stores the number of candies` `        ``int` `[]arr=``new` `int``[k];` `     `  `        ``for``(``int` `i=``0``;i> ``1``;` `            ``int` `sum = (mid * (mid + ``1``)) >> ``1``;` `    `  `            ``// If sum is below N` `            ``if` `(sum <= n) {` `    `  `                ``// Find number of complete turns` `                ``count = mid / k;` `    `  `                ``// Right halve` `                ``low = mid + ``1``;` `            ``}` `            ``else` `{` `    `  `                ``// Left halve` `                ``high = mid - ``1``;` `            ``}` `        ``}` `    `  `        ``// Last term of last complete series` `        ``int` `last = (count * k);` `    `  `        ``// Subtract the sum till` `        ``n -= (last * (last + ``1``)) / ``2``;` `    `  `        ``int` `j = ``0``;` `    `  `        ``// First term of incomplete series` `        ``int` `term = (count * k) + ``1``;` `    `  `        ``while` `(n > ``0``) {` `            ``if` `(term <= n) {` `                ``arr[j++] = term;` `                ``n -= term;` `                ``term++;` `            ``}` `            ``else` `{` `                ``arr[j] += n;` `                ``n = ``0``;` `            ``}` `        ``}` `    `  `        ``// Count the total candies` `        ``for` `(``int` `i = ``0``; i < k; i++)` `            ``arr[i] += (count * (i + ``1``))` `                ``+ (k * (count * (count - ``1``)) / ``2``);` `    `  `        ``// Print the total candies` `        ``for` `(``int` `i = ``0``; i < k; i++)` `            ``System.out.print( arr[i] + ``" "` `);` `    ``}` `    `  `    ``// Driver Code` `    ``public` `static` `void` `main(String []args)` `    ``{` `        ``int` `n = ``7``, k = ``4``;` `        ``candies(n, k);` `    `  `        `  `    ``}`   `}`   `// This code is contributed by ihritik`

## Python3

 `# Python3 implementation of the above approach`   `# Function to find out the number of` `# candies every person received` `def` `candies(n, k):`   `    ``# Count number of complete turns` `    ``count ``=` `0``;`   `    ``# Get the last term` `    ``ind ``=` `1``;`   `    ``# Stores the number of candies` `    ``arr ``=` `[``0``] ``*` `k;`   `    ``low ``=` `0``;` `    ``high ``=` `n;`   `    ``# Do a binary search to find the ` `    ``# number whose sum is less than N.` `    ``while` `(low <``=` `high):`   `        ``# Get mide` `        ``mid ``=` `(low ``+` `high) >> ``1``;` `        ``sum` `=` `(mid ``*` `(mid ``+` `1``)) >> ``1``;`   `        ``# If sum is below N` `        ``if` `(``sum` `<``=` `n): `   `            ``# Find number of complete turns` `            ``count ``=` `int``(mid ``/` `k);`   `            ``# Right halve` `            ``low ``=` `mid ``+` `1``;` `        ``else``:`   `            ``# Left halve` `            ``high ``=` `mid ``-` `1``;`   `    ``# Last term of last complete series` `    ``last ``=` `(count ``*` `k);`   `    ``# Subtract the sum till` `    ``n ``-``=` `int``((last ``*` `(last ``+` `1``)) ``/` `2``);`   `    ``i ``=` `0``;`   `    ``# First term of incomplete series` `    ``term ``=` `(count ``*` `k) ``+` `1``;`   `    ``while` `(n):` `        ``if` `(term <``=` `n):` `            ``arr[i] ``=` `term;` `            ``i ``+``=` `1``;` `            ``n ``-``=` `term;` `            ``term ``+``=` `1``;` `        ``else``:` `            ``arr[i] ``+``=` `n;` `            ``n ``=` `0``;`   `    ``# Count the total candies` `    ``for` `i ``in` `range``(k):` `        ``arr[i] ``+``=` `((count ``*` `(i ``+` `1``)) ``+` `                ``int``(k ``*` `(count ``*` `(count ``-` `1``)) ``/` `2``));`   `    ``# Print the total candies` `    ``for` `i ``in` `range``(k):` `        ``print``(arr[i], end ``=` `" "``);`   `# Driver Code` `n ``=` `7``;` `k ``=` `4``;` `candies(n, k);`   `# This code is contributed by chandan_jnu`

## C#

 `// C# implementation of the above approach`   `using` `System;` `class` `GFG` `{` `    ``// Function to find out the number of` `    ``// candies every person received` `    ``static` `void` `candies(``int` `n, ``int` `k)` `    ``{` `    `  `        ``// Count number of complete turns` `        ``int` `count = 0;` `    `  `        ``// Get the last term` `        ``int` `ind = 1;` `    `  `        ``// Stores the number of candies` `        ``int` `[]arr=``new` `int``[k];` `     `  `        ``for``(``int` `i=0;i> 1;` `            ``int` `sum = (mid * (mid + 1)) >> 1;` `    `  `            ``// If sum is below N` `            ``if` `(sum <= n) {` `    `  `                ``// Find number of complete turns` `                ``count = mid / k;` `    `  `                ``// Right halve` `                ``low = mid + 1;` `            ``}` `            ``else` `{` `    `  `                ``// Left halve` `                ``high = mid - 1;` `            ``}` `        ``}` `    `  `        ``// Last term of last complete series` `        ``int` `last = (count * k);` `    `  `        ``// Subtract the sum till` `        ``n -= (last * (last + 1)) / 2;` `    `  `        ``int` `j = 0;` `    `  `        ``// First term of incomplete series` `        ``int` `term = (count * k) + 1;` `    `  `        ``while` `(n > 0) {` `            ``if` `(term <= n) {` `                ``arr[j++] = term;` `                ``n -= term;` `                ``term++;` `            ``}` `            ``else` `{` `                ``arr[j] += n;` `                ``n = 0;` `            ``}` `        ``}` `    `  `        ``// Count the total candies` `        ``for` `(``int` `i = 0; i < k; i++)` `            ``arr[i] += (count * (i + 1))` `                ``+ (k * (count * (count - 1)) / 2);` `    `  `        ``// Print the total candies` `        ``for` `(``int` `i = 0; i < k; i++)` `            ``Console.Write( arr[i] + ``" "` `);` `    ``}` `    `  `    ``// Driver Code` `    ``public` `static` `void` `Main()` `    ``{` `        ``int` `n = 7, k = 4;` `        ``candies(n, k);` `    `  `        `  `    ``}`   `}`   `// This code is contributed by ihritik`

## PHP

 `> 1;` `        ``\$sum` `= (``\$mid` `* (``\$mid` `+ 1)) >> 1;`   `        ``// If sum is below N` `        ``if` `(``\$sum` `<= ``\$n``) ` `        ``{`   `            ``// Find number of complete turns` `            ``\$count` `= (int)(``\$mid` `/ ``\$k``);`   `            ``// Right halve` `            ``\$low` `= ``\$mid` `+ 1;` `        ``}` `        ``else` `        ``{`   `            ``// Left halve` `            ``\$high` `= ``\$mid` `- 1;` `        ``}` `    ``}`   `    ``// Last term of last complete series` `    ``\$last` `= (``\$count` `* ``\$k``);`   `    ``// Subtract the sum till` `    ``\$n` `-= (int)((``\$last` `* (``\$last` `+ 1)) / 2);`   `    ``\$i` `= 0;`   `    ``// First term of incomplete series` `    ``\$term` `= (``\$count` `* ``\$k``) + 1;`   `    ``while` `(``\$n``) ` `    ``{` `        ``if` `(``\$term` `<= ``\$n``) ` `        ``{` `            ``\$arr``[``\$i``++] = ``\$term``;` `            ``\$n` `-= ``\$term``;` `            ``\$term``++;` `        ``}` `        ``else` `        ``{` `            ``\$arr``[``\$i``] += ``\$n``;` `            ``\$n` `= 0;` `        ``}` `    ``}`   `    ``// Count the total candies` `    ``for` `(``\$i` `= 0; ``\$i` `< ``\$k``; ``\$i``++)` `        ``\$arr``[``\$i``] += (``\$count` `* (``\$i` `+ 1)) + ` `         ``(int)(``\$k` `* (``\$count` `* (``\$count` `- 1)) / 2);`   `    ``// Print the total candies` `    ``for` `(``\$i` `= 0; ``\$i` `< ``\$k``; ``\$i``++)` `        ``echo` `\$arr``[``\$i``] . ``" "``;` `}`   `// Driver Code` `\$n` `= 7;` `\$k` `= 4;` `candies(``\$n``, ``\$k``);`   `// This code is contributed` `// by chandan_jnu` `?>`

## Javascript

 ``

Output:

`1 2 3 1`

Time Complexity: O(log N + K)
Auxiliary Space: O(K) for given K

#### Approach:

The distribute_candies function takes two integers as input: N, which represents the total number of candies, and K, which represents the number of people. It returns a vector of integers, where the i-th element represents the number of candies distributed to the i-th person.

The function initializes a vector result of K elements with zero candies. It then loops until all N candies have been distributed. In each iteration, it calculates the number of candies to give to the current person (candies_to_give) as the minimum of N and i+1. It then adds candies_to_give to the number of candies distributed to the i-th person in result, and subtracts candies_to_give from N. Finally, it increments i to move to the next person.

## C++

 `#include ` `#include `   `std::vector<``int``> distribute_candies(``int` `N, ``int` `K) {` `    ``std::vector<``int``> result(K, 0); ``// initialize a vector of K elements with zero candies` `    ``int` `i = 0;` `    ``while` `(N > 0) { ``// loop until we have no more candies to distribute` `        ``int` `candies_to_give = std::min(N, i+1);` `        ``result[i % K] += candies_to_give; ``// distribute candies to the i-th person` `        ``N -= candies_to_give; ``// subtract the distributed candies from N` `        ``i += 1; ``// move to the next person` `    ``}` `    ``return` `result;` `}`   `int` `main() {` `    ``int` `N = 10;` `    ``int` `K = 3;` `    ``std::vector<``int``> result = distribute_candies(N, K);` `    ``for` `(``int` `i = 0; i < K; i++) {` `        ``std::cout << result[i] << ``" "``;` `    ``}` `  `  `    ``return` `0;` `}`

## Java

 `import` `java.util.*;`   `public` `class` `DistributeCandies {` `    ``public` `static` `List distributeCandies(``int` `N,` `                                                  ``int` `K)` `    ``{` `        ``List result` `            ``= ``new` `ArrayList<>(Collections.nCopies(` `                ``K, ``0``)); ``// initialize a list of K elements` `                        ``// with zero candies` `        ``int` `i = ``0``;` `        ``while` `(N > ``0``) { ``// loop until we have no more` `                        ``// candies to distribute` `            ``int` `candiesToGive = Math.min(N, i + ``1``);` `            ``result.set(` `                ``i % K,` `                ``result.get(i % K)` `                    ``+ candiesToGive); ``// distribute candies` `                                      ``// to the i-th person` `            ``N -= candiesToGive; ``// subtract the distributed` `                                ``// candies from N` `            ``i += ``1``; ``// move to the next person` `        ``}` `        ``return` `result;` `    ``}`   `    ``public` `static` `void` `main(String[] args)` `    ``{` `        ``int` `N = ``10``;` `        ``int` `K = ``3``;` `        ``List result = distributeCandies(N, K);` `        ``for` `(``int` `i = ``0``; i < K; i++) {` `            ``System.out.print(result.get(i) + ``" "``);` `        ``}` `      `  `    ``}` `}`

## Python3

 `def` `distribute_candies(N, K):` `    ``result ``=` `[``0``] ``*` `K ``# initialize a list of K elements with zero candies` `    ``i ``=` `0` `    ``while` `N > ``0``: ``# loop until we have no more candies to distribute` `        ``candies_to_give ``=` `min``(N, i``+``1``)` `        ``result[i ``%` `K] ``+``=` `candies_to_give ``# distribute candies to the i-th person` `        ``N ``-``=` `candies_to_give ``# subtract the distributed candies from N` `        ``i ``+``=` `1` `# move to the next person` `    ``return` `result`   `if` `__name__ ``=``=` `'__main__'``:` `    ``N ``=` `10` `    ``K ``=` `3` `    ``result ``=` `distribute_candies(N, K)` `    ``for` `i ``in` `range``(K):` `        ``print``(result[i], end``=``" "``)` `    ``# output: 3 3 4`

## C#

 `using` `System;` `using` `System.Collections.Generic;`   `public` `class` `Gfg {` `    ``public` `static` `List<``int``> distribute_candies(``int` `N, ``int` `K) {` `        ``List<``int``> result = ``new` `List<``int``>(``new` `int``[K]); ``// initialize a list of K elements with zero candies` `        ``int` `i = 0;` `        ``while` `(N > 0) { ``// loop until we have no more candies to distribute` `            ``int` `candies_to_give = Math.Min(N, i+1);` `            ``result[i % K] += candies_to_give; ``// distribute candies to the i-th person` `            ``N -= candies_to_give; ``// subtract the distributed candies from N` `            ``i += 1; ``// move to the next person` `        ``}` `        ``return` `result;` `    ``}` `    `  `    ``public` `static` `void` `Main() {` `        ``int` `N = 10;` `        ``int` `K = 3;` `        ``List<``int``> result = distribute_candies(N, K);` `        ``for` `(``int` `i = 0; i < K; i++) {` `            ``Console.Write(result[i] + ``" "``);` `        ``}` `        ``// output: 3 3 4` `    ``}` `}`

## Javascript

 `// JavaScript equivalent ` `function` `distribute_candies(N, K) {` `    ``let result = Array(K).fill(0); ``// initialize a list of K elements with zero candies` `    ``let i = 0;` `    ``while` `(N > 0) { ``// loop until we have no more candies to distribute` `        ``let candies_to_give = Math.min(N, i+1);` `        ``result[i % K] += candies_to_give; ``// distribute candies to the i-th person` `        ``N -= candies_to_give; ``// subtract the distributed candies from N` `        ``i += 1; ``// move to the next person` `    ``}` `    ``return` `result;` `}`   `let N = 10;` `let K = 3;` `let result = distribute_candies(N, K); temp=``""``;` `for` `(let i = 0; i < K; i++) {` `    ``temp = temp+result[i]+``" "``;` `} console.log(temp);`

Output

`5 2 3 `

The time complexity of this algorithm is O(N), because we need to distribute each of the N candies.
The auxiliary space of this algorithm is O(K), because we use a vector of K elements to store the candies distributed to each person.

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next