# Count of elements not divisible by any other elements of Array

Given an array arr[], the task is to determine the number of elements of the array which are not divisible by any other element in the given array.

Examples:

Input: arr[] = {86, 45, 18, 4, 8, 28, 19, 33, 2}
Output: 4
Explanation:
The elements are {2, 19, 33, 45} are not divisible by any other array element.

Input: arr[] = {3, 3, 3}
Output: 0

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Naive Approach: The naive approach is to iterate over the entire array and count the number of elements which are not divisible by any other elements in the given array and print the count.

Below is the implementation of the above approach:

## C++

 `// CPP program for the above approach ` `#include ` `#define ll long long int ` `using` `namespace` `std; ` ` `  `// Function to count the number of ` `// elements of array which are not ` `// divisible by any other element ` `// in the array arr[] ` `int` `count(``int` `a[], ``int` `n) ` `{ ` `    ``int` `countElements = 0; ` ` `  `    ``// Iterate over the array ` `    ``for` `(``int` `i = 0; i < n; i++) { ` ` `  `        ``bool` `flag = ``true``; ` `        ``for` `(``int` `j = 0; j < n; j++) { ` ` `  `            ``// Check if the element ` `            ``// is itself or not ` `            ``if` `(i == j) ` `                ``continue``; ` ` `  `            ``// Check for divisibility ` `            ``if` `(a[i] % a[j] == 0) { ` `                ``flag = ``false``; ` `                ``break``; ` `            ``} ` `        ``} ` ` `  `        ``if` `(flag == ``true``) ` `            ``++countElements; ` `    ``} ` ` `  `    ``// Return the final result ` `    ``return` `countElements; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``// Given array ` `    ``int` `arr[] = { 86, 45, 18, 4, 8, ` `                  ``28, 19, 33, 2 }; ` `    ``int` `n = ``sizeof``(a) / ``sizeof``(``int``); ` ` `  `    ``// Function Call ` `    ``cout << count(arr, n); ` `    ``return` `0; ` `} `

Output:

```4
```

Time Complexity: O(N2)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, we will use the concept of Sieve of Eratosthenes. Below are the steps:

1. Initialize a boolean array(say v[]) of size equal to the maximum element present in the array + 1 with true at every index.
2. Traverse the given array arr[] and change the value at index of multiple of current element as false in the array v[].
3. Create a Hashmap and store the frequency of each element in it.
4. For each element(say current_element) in the array, if v[current_element] is true then that element is not divisible by any other element in the given array and increment the count for the current element.
5. Print the final value of count after above steps.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to count the number of ` `// elements of array which are not ` `// divisible by any other element ` `// of same array ` `int` `countEle(``int` `a[], ``int` `n) ` `{ ` `    ``// Length for boolean array ` `    ``int` `len = 0; ` ` `  `    ``// Hash map for storing the ` `    ``// element and it's frequency ` `    ``unordered_map<``int``, ``int``> hmap; ` `    ``for` `(``int` `i = 0; i < n; i++) { ` ` `  `        ``// Update the maximum element ` `        ``len = max(len, a[i]); ` `        ``hmap[a[i]]++; ` `    ``} ` ` `  `    ``// Boolean array of size ` `    ``// of the max element + 1 ` `    ``bool` `v[len + 1]; ` ` `  `    ``for` `(``int` `i = 0; i <= len; i++) { ` `        ``v[i] = ``true``; ` `    ``} ` ` `  `    ``// Marking the multiples as false ` `    ``for` `(``int` `i = 0; i < n; i++) { ` ` `  `        ``if` `(v[a[i]] == ``false``) ` `            ``continue``; ` ` `  `        ``for` `(``int` `j = 2 * a[i]; ` `             ``j <= Glen; j += a[i]) { ` `            ``v[j] = ``false``; ` `        ``} ` `    ``} ` ` `  `    ``// To store the final count ` `    ``int` `count = 0; ` ` `  `    ``// Traverse boolean array ` `    ``for` `(``int` `i = 1; i <= len; i++) { ` ` `  `        ``// Check if i is not divisible by ` `        ``// any other array elements and ` `        ``// appears in the array only once ` `        ``if` `(v[i] == ``true` `            ``&& hmap.count(i) == 1 ` `            ``&& hmap[i] == 1) { ` `            ``count += 1; ` `        ``} ` `    ``} ` ` `  `    ``// Return the final Count ` `    ``return` `count; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``// Given array ` `    ``int` `arr[] = { 86, 45, 18, 4, 8, ` `                  ``28, 19, 33, 2 }; ` `    ``int` `n = ``sizeof``(a) / ``sizeof``(``int``); ` ` `  `    ``// Function Call ` `    ``cout << countEle(a, n); ` ` `  `    ``return` `0; ` `} `

Output:

```4
```

Time Complexity: O(N*log(M)) where N is the number of elements in the given array and M is the maximum element in the given array.
Auxiliary Space: O(M + N) where N is the number of elements in the given array and M is the maximum element in the given array.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.