# Count of decreasing pairs formed from numbers 1 to N

• Last Updated : 18 May, 2021

Given an integer N, the task is to count of decreasing pairs from numbers 1 to N.

A pair (x, y) is said to be decreasing if x > y

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Examples:

Input: N = 8
Output:
Explanation:
Decreasing pairs are: (7, 1), (6, 2), (5, 3).
Input: N = 9
Output:
Explanation:
Decreasing pairs are: (8, 1), (7, 2), (6, 3), (5, 4).

Approach: Consider the below cases:

If N = 1 => Count = 0
If N = 2 => Count = 1 {(2, 1)}
If N = 3 => Count = 1 {(3, 1) or (3, 2)}
If N = 4 => Count = 2 {(4, 3), (2, 1)}
If N = 5 => Count = 2 {(5, 4), (3, 2)}
If N = 6 => Count = 3 {(6, 5), (4, 3), (2, 1)}

and so on

It can be clearly observed that Below is the implementation of the above approach:

## C++

 // C++ program to count decreasing// pairs formed from numbers 1 to N #include using namespace std; // Function to count the// possible number of pairsint divParts(int N){    if (N % 2 == 0)         // if the number is even        // then the answer in (N/2)-1        cout << (N / 2) - 1 << endl;     else        // if the number is odd        // then the answer in N/2        cout << N / 2 << endl;} // Driver codeint main(){    int N = 8;     divParts(N);     return 0;}

## Java

 // Java program to count decreasing// pairs formed from numbers 1 to Nimport java.util.*;class GFG{     // Function to count the// possible number of pairsstatic void divParts(int N){    if (N % 2 == 0)         // if the number is even        // then the answer in (N/2)-1        System.out.println((N / 2) - 1);     else        // if the number is odd        // then the answer in N/2        System.out.println((N / 2));} // Driver codepublic static void main(String[] args){    int N = 8;     divParts(N);}} // This code is contributed by offbeat

## Python3

 # Python3 program to count decreasing# pairs formed from numbers 1 to N # Function to count the# possible number of pairsdef divParts(N):     if (N % 2 == 0):         # if the number is even        # then the answer in (N/2)-1        print((N / 2) - 1);     else:                 # if the number is odd        # then the answer in N/2        print(N / 2); # Driver codeN = 8;divParts(N); # This code is contributed by Code_Mech

## C#

 // C# program to count decreasing// pairs formed from numbers 1 to Nusing System;class GFG{     // Function to count the// possible number of pairsstatic void divParts(int N){    if (N % 2 == 0)         // if the number is even        // then the answer in (N/2)-1        Console.WriteLine((N / 2) - 1);     else        // if the number is odd        // then the answer in N/2        Console.WriteLine((N / 2));} // Driver codepublic static void Main(){    int N = 8;     divParts(N);}} // This code is contributed by Code_Mech

## Javascript

 
Output:
3

My Personal Notes arrow_drop_up