Count of Binary Strings possible as per given conditions

Given two integers N and M, where N denotes the count of ‘0’ and M denotes the count of ‘1’, and an integer K, the task is to find the maximum number of binary strings that can be generated of the following two types: 

  • A string can consist of K0‘s and a single ‘1‘.
  • A string can consist of K1‘s and a single ‘0‘.

Examples: 

Input: N = 4, M = 4, K = 2 
Output:
Explanation: 
Count of ‘0‘s = 4 
Count of ‘1‘s = 4 
Possible ways to combine 0’s and 1’s under given constraints are {“001”, “001”} or {“001”, “110”} or {“110”, “110”} 
Therefore, at most 2 combinations exists in a selection. 
Each combination can be arranged in K + 1 ways, i.e. “001” can be rearranged to form “010, “100” as well. 
Therefore, the maximum possible strings that can be generated is 3 * 2 = 6

Input: N = 101, M = 231, K = 15 
Output: 320 

Approach: 
Follow the steps below to solve the problem: 



  • Consider the following three conditions to generate maximum possible combinations of binary strings: 
    • Number of combinations cannot exceed N.
    • Number of combinations cannot exceed M.
    • Number of combinations cannot exceed (A+B)/(K + 1).
  • Therefore, the maximum possible combinations are min(A, B, (A + B)/ (K + 1)).
  • Therefore, the maximum possible strings that can be generated are (K + 1) * min(A, B, (A + B)/ (K + 1)).

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate maximum
// possible strings that can be generated
long long countStrings(long long A,
                    long long B,
                    long long K)
{
 
    long long X = (A + B) / (K + 1);
 
    // Maximum possible strings
    return (min(A, min(B, X)) * (K + 1));
}
int main()
{
 
    long long N = 101, M = 231, K = 15;
    cout << countStrings(N, M, K);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.io.*;
import java.util.*;
 
class GFG{
 
// Function to generate maximum
// possible strings that can be generated
static long countStrings(long A, long B,
                        long K)
{
    long X = (A + B) / (K + 1);
 
    // Maximum possible strings
    return (Math.min(A, Math.min(B, X)) *
                                (K + 1));
}
 
// Driver Code
public static void main (String[] args)
{
    long N = 101, M = 231, K = 15;
     
    System.out.print(countStrings(N, M, K));
}
}
 
// This code is contributed by offbeat

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement 
# the above approach 
  
# Function to generate maximum 
# possible strings that can be
# generated 
def countStrings(A, B, K): 
   
    X = (A + B) // (K + 1
   
    # Maximum possible strings 
    return (min(A, min(B, X)) * (K + 1)) 
 
# Driver code
N, M, K = 101, 231, 15
 
print(countStrings(N, M, K))
 
# This code is contributed divyeshrabadiya07

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function to generate maximum
// possible strings that can be generated
static long countStrings(long A, long B,
                        long K)
{
    long X = (A + B) / (K + 1);
 
    // Maximum possible strings
    return (Math.Min(A, Math.Min(B, X)) *
                                (K + 1));
}
 
// Driver Code
public static void Main (string[] args)
{
    long N = 101, M = 231, K = 15;
     
    Console.Write(countStrings(N, M, K));
}
}
 
// This code is contributed by rock_cool

chevron_right


Output:

320

Time Complexity: O(1)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.