Given an array **A[ ]** consisting of **N** distinct integers, the task is to find the number of elements which are **strictly greater **than all the elements preceding it and strictly greater than at least **K** elements on its right.

**Examples:**

Input:A[] = {2, 5, 1, 7, 3, 4, 0}, K = 3

Output:2

Explanation:

The only array elements satisfying the given conditions are:

5: Greater than all elements on its left {2} and at least K(= 3) elements on its right {1, 3, 4, 0}7: Greater than all elements on its left {2, 5, 1} and at least K(= 3) elements on its right {3, 4, 0}Therefore, the count is 2.

Input:A[] = {11, 2, 4, 7, 5, 9, 6, 3}, K = 2

Output:1

**Naive Approach: **

The simplest approach to solve the problem is to traverse the array and for each element, traverse all the elements on its left and check if all of them are smaller than it or not and traverse all elements on its right to check if at least **K** elements are smaller than it or not. For every element satisfying the conditions, increase **count**. Finally, print the value of **count**.

**Time Complexity:** O(N^{2})

**Auxiliary Space:** O(1)

**Efficient Approach:**

The above approach can be further optimized by using Self-Balancing BST. Follow the steps below:

- Traverse the array from right to left and insert all elements one by one in an AVL Tree
- Using the AVL Tree generate an array
**countSmaller[]**which contains the count of smaller elements on the right of every array element. - Traverse the array and for every
**i**, check if it is the maximum obtained so far and^{th}element**countSmaller[i]**is greater than or equal to**K**. - If so, increase
**count**. - Print the final value of
**count**as the answer.

Below is the implementation of the above approach:

## C++

`// C++ Program to implement ` `// the above appraoch ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Structure of an AVL Tree Node ` `struct` `node { ` ` ` `int` `key; ` ` ` `struct` `node* left; ` ` ` `struct` `node* right; ` ` ` `int` `height; ` ` ` `// Size of the tree rooted ` ` ` `// with this node ` ` ` `int` `size; ` `}; ` ` ` `// Utility function to get maximum ` `// of two integers ` `int` `max(` `int` `a, ` `int` `b); ` ` ` `// Utility function to get height ` `// of the tree rooted with N ` `int` `height(` `struct` `node* N) ` `{ ` ` ` `if` `(N == NULL) ` ` ` `return` `0; ` ` ` `return` `N->height; ` `} ` ` ` `// Utility function to find size of ` `// the tree rooted with N ` `int` `size(` `struct` `node* N) ` `{ ` ` ` `if` `(N == NULL) ` ` ` `return` `0; ` ` ` `return` `N->size; ` `} ` ` ` `// Utility function to get maximum ` `// of two integers ` `int` `max(` `int` `a, ` `int` `b) ` `{ ` ` ` `return` `(a > b) ? a : b; ` `} ` ` ` `// Helper function to allocates a ` `// new node with the given key ` `struct` `node* newNode(` `int` `key) ` `{ ` ` ` `struct` `node* node ` ` ` `= (` `struct` `node*) ` ` ` `malloc` `(` `sizeof` `(` `struct` `node)); ` ` ` `node->key = key; ` ` ` `node->left = NULL; ` ` ` `node->right = NULL; ` ` ` `node->height = 1; ` ` ` `node->size = 1; ` ` ` `return` `(node); ` `} ` ` ` `// Utility function to right rotate ` `// subtree rooted with y ` `struct` `node* rightRotate(` `struct` `node* y) ` `{ ` ` ` `struct` `node* x = y->left; ` ` ` `struct` `node* T2 = x->right; ` ` ` ` ` `// Perform rotation ` ` ` `x->right = y; ` ` ` `y->left = T2; ` ` ` ` ` `// Update heights ` ` ` `y->height = max(height(y->left), ` ` ` `height(y->right)) ` ` ` `+ 1; ` ` ` `x->height = max(height(x->left), ` ` ` `height(x->right)) ` ` ` `+ 1; ` ` ` ` ` `// Update sizes ` ` ` `y->size = size(y->left) ` ` ` `+ size(y->right) + 1; ` ` ` `x->size = size(x->left) ` ` ` `+ size(x->right) + 1; ` ` ` ` ` `// Return new root ` ` ` `return` `x; ` `} ` ` ` `// Utility function to left rotate ` `// subtree rooted with x ` `struct` `node* leftRotate(` `struct` `node* x) ` `{ ` ` ` `struct` `node* y = x->right; ` ` ` `struct` `node* T2 = y->left; ` ` ` ` ` `// Perform rotation ` ` ` `y->left = x; ` ` ` `x->right = T2; ` ` ` ` ` `// Update heights ` ` ` `x->height = max(height(x->left), ` ` ` `height(x->right)) ` ` ` `+ 1; ` ` ` `y->height = max(height(y->left), ` ` ` `height(y->right)) ` ` ` `+ 1; ` ` ` ` ` `// Update sizes ` ` ` `x->size = size(x->left) ` ` ` `+ size(x->right) + 1; ` ` ` `y->size = size(y->left) ` ` ` `+ size(y->right) + 1; ` ` ` ` ` `// Return new root ` ` ` `return` `y; ` `} ` ` ` `// Function to obtain Balance factor ` `// of node N ` `int` `getBalance(` `struct` `node* N) ` `{ ` ` ` `if` `(N == NULL) ` ` ` `return` `0; ` ` ` ` ` `return` `height(N->left) ` ` ` `- height(N->right); ` `} ` ` ` `// Function to insert a new key to the ` `// tree rooted with node ` `struct` `node* insert(` `struct` `node* node, ` `int` `key, ` ` ` `int` `* count) ` `{ ` ` ` `// Perform the normal BST rotation ` ` ` `if` `(node == NULL) ` ` ` `return` `(newNode(key)); ` ` ` ` ` `if` `(key < node->key) ` ` ` `node->left ` ` ` `= insert(node->left, key, count); ` ` ` `else` `{ ` ` ` `node->right ` ` ` `= insert(node->right, key, count); ` ` ` ` ` `// Update count of smaller elements ` ` ` `*count = *count + size(node->left) + 1; ` ` ` `} ` ` ` ` ` `// Update height and size of the ancestor ` ` ` `node->height = max(height(node->left), ` ` ` `height(node->right)) ` ` ` `+ 1; ` ` ` `node->size = size(node->left) ` ` ` `+ size(node->right) + 1; ` ` ` ` ` `// Get the balance factor of the ancestor ` ` ` `int` `balance = getBalance(node); ` ` ` ` ` `// Left Left Case ` ` ` `if` `(balance > 1 && key < node->left->key) ` ` ` `return` `rightRotate(node); ` ` ` ` ` `// Right Right Case ` ` ` `if` `(balance < -1 && key > node->right->key) ` ` ` `return` `leftRotate(node); ` ` ` ` ` `// Left Right Case ` ` ` `if` `(balance > 1 && key > node->left->key) { ` ` ` `node->left = leftRotate(node->left); ` ` ` `return` `rightRotate(node); ` ` ` `} ` ` ` ` ` `// Right Left Case ` ` ` `if` `(balance < -1 && key < node->right->key) { ` ` ` `node->right = rightRotate(node->right); ` ` ` `return` `leftRotate(node); ` ` ` `} ` ` ` ` ` `return` `node; ` `} ` ` ` `// Function to generate an array which contains ` `// count of smaller elements on the right ` `void` `constructLowerArray(` `int` `arr[], ` ` ` `int` `countSmaller[], ` ` ` `int` `n) ` `{ ` ` ` `int` `i, j; ` ` ` `struct` `node* root = NULL; ` ` ` ` ` `for` `(i = 0; i < n; i++) ` ` ` `countSmaller[i] = 0; ` ` ` ` ` `// Insert all elements in the AVL Tree ` ` ` `// and get the count of smaller elements ` ` ` `for` `(i = n - 1; i >= 0; i--) { ` ` ` `root = insert(root, arr[i], ` ` ` `&countSmaller[i]); ` ` ` `} ` `} ` ` ` `// Function to find the number ` `// of elements which are greater ` `// than all elements on its left ` `// and K elements on its right ` `int` `countElements(` `int` `A[], ` `int` `n, ` `int` `K) ` `{ ` ` ` ` ` `int` `count = 0; ` ` ` ` ` `// Stores the count of smaller ` ` ` `// elements on its right ` ` ` `int` `* countSmaller ` ` ` `= (` `int` `*)` `malloc` `(` `sizeof` `(` `int` `) * n); ` ` ` `constructLowerArray(A, countSmaller, n); ` ` ` ` ` `int` `maxi = INT_MIN; ` ` ` `for` `(` `int` `i = 0; i <= (n - K - 1); i++) { ` ` ` `if` `(A[i] > maxi && countSmaller[i] >= K) { ` ` ` `count++; ` ` ` `maxi = A[i]; ` ` ` `} ` ` ` `} ` ` ` ` ` `return` `count; ` `} ` ` ` `// Driver Code ` `int` `main() ` `{ ` ` ` ` ` `int` `A[] = { 2, 5, 1, 7, 3, 4, 0 }; ` ` ` `int` `n = ` `sizeof` `(A) / ` `sizeof` `(` `int` `); ` ` ` `int` `K = 3; ` ` ` ` ` `cout << countElements(A, n, K); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

**Output:**

2

**Time Complexity: **O(NlogN)

**Auxiliary Space: **O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Count of Array elements greater than all elements on its left and next K elements on its right
- Count of array elements which are greater than all elements on its left
- Reduce the array by deleting elements which are greater than all elements to its left
- Length of longest subarray in which elements greater than K are more than elements not greater than K
- Count smaller elements on right side and greater elements on left side using Binary Index Tree
- Replace every element with the least greater element on its right
- Minimum elements to change so that for an index i all elements on the left are -ve and all elements on the right are +ve
- Count the number of elements which are greater than any of element on right side of an array
- Maximize the number of indices such that element is greater than element to its left
- Sum of all array elements less than X and greater than Y for Q queries
- Smallest subarray of size greater than K with sum greater than a given value
- Rotate all odd numbers right and all even numbers left in an Array of 1 to N
- Maximum product of indexes of next greater on left and right
- Count pairs (p, q) such that p occurs in array at least q times and q occurs at least p times
- Find all elements in array which have at-least two greater elements
- Find a number K such that Array contains at least K numbers greater than or equal to K
- Count of Array elements greater than or equal to twice the Median of K trailing Array elements
- Count all possible paths from top left to bottom right of a mXn matrix
- Count all possible paths from top left to bottom right of a Matrix without crossing the diagonal
- Find an element in array such that sum of left array is equal to sum of right array

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.