Related Articles

# Count of all possible pairs of array elements with same parity

• Difficulty Level : Easy
• Last Updated : 05 Jul, 2021

Given an array A[] of integers, the task is to find the total number of pairs such that each pair contains either both even or both odd elements. A valid pair (A[ i ], A[ j ]) can only be formed if i != j

Examples:

Input: A[ ] = {1, 2, 3, 1, 3}
Output:
Explanation:
Possible odd pairs = (1, 3), (1, 1), (1, 3), (3, 1), (3, 3), (1, 3) = 6
Possible even pairs = 0
Hence, total pairs = 6 + 0 = 6

Input: A[ ] = {8, 2, 3, 1, 4, 2}
Output: 7
Explanation:
Possible odd pair = (3, 1) = 1
Possible even pairs = (8, 2), (8, 4), (8, 2), (2, 4), (2, 2), (4, 2) = 6
Hence, total pairs = 6 + 1 = 7

Naive Approach:
The simplest approach is to generate all possible pairs. For each pair, check if both elements are odd or both are even. If so, increment a counter. The final count will be the required answer.

Time Complexity: O(N2)

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach``#include ``using` `namespace` `std;` `// Function to return the answer``int` `countPairs(``int` `A[], ``int` `n)``{``    ``int` `count = 0, i, j;``    ` `    ``// Generate all possible pairs``    ``for``(i = 0; i < n; i++)``    ``{``        ``for``(j = i + 1; j < n; j++)``        ``{``            ` `            ``// Increment the count if``            ``// both even or both odd``            ``if` `((A[i] % 2 == 0 &&``                 ``A[j] % 2 == 0) ||``                ``(A[i] % 2 != 0 &&``                 ``A[j] % 2 != 0))``                ``count++;``        ``}``    ``}``    ``return` `count;``}` `// Driver Code``int` `main()``{``    ``int` `A[] = { 1, 2, 3, 1, 3 };``    ``int` `n = ``sizeof``(A) / ``sizeof``(``int``);``    ` `    ``cout << countPairs(A, n);``}` `// This code is contributed by jrishabh99`

## Java

 `// Java program for above approach` `import` `java.util.*;` `class` `GFG {` `    ``static` `int` `countPairs(``        ``int``[] A, ``int` `n)``    ``{``        ``int` `count = ``0``, i, j;` `        ``// Generate all possible pairs``        ``for` `(i = ``0``; i < n; i++) {``            ``for` `(j = i + ``1``; j < n; j++) {` `                ``// Increment the count if``                ``// both even or both odd``                ``if` `((A[i] % ``2` `== ``0``                     ``&& A[j] % ``2` `== ``0``)``                    ``|| (A[i] % ``2` `!= ``0``                        ``&& A[j] % ``2` `!= ``0``))``                    ``count++;``            ``}``        ``}``        ``return` `count;``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(``        ``String[] args)``    ``{``        ``int``[] A = { ``1``, ``2``, ``3``, ``1``, ``3` `};``        ``int` `n = A.length;``        ``System.out.println(``            ``countPairs(A, n));``    ``}``}`

## Python3

 `# Python3 program for``# the above approach` `# Function to return the answer``def` `countPairs(A, n):` `    ``count ``=` `0``    ` `    ``# Generate all possible pairs``    ``for` `i ``in` `range` `(n):``        ``for` `j ``in` `range` `(i ``+` `1``, n):``      ` `            ``# Increment the count if``            ``# both even or both odd``            ``if` `((A[i] ``%` `2` `=``=` `0` `and``                 ``A[j] ``%` `2` `=``=` `0``) ``or``                ``(A[i] ``%` `2` `!``=` `0` `and``                 ``A[j] ``%` `2` `!``=` `0``)):``                ``count ``+``=` `1``    ` `    ``return` `count` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:``  ` `    ``A ``=` `[``1``, ``2``, ``3``, ``1``, ``3``]``    ``n ``=` `len``(A)``    ``print``(countPairs(A, n))``    ` `# This code is contributed by Chitranayal`

## C#

 `// C# program for above approach``using` `System;``class` `GFG{` `static` `int` `countPairs(``int``[] A, ``int` `n)``{``    ``int` `count = 0, i, j;` `    ``// Generate all possible pairs``    ``for` `(i = 0; i < n; i++)``    ``{``        ``for` `(j = i + 1; j < n; j++)``        ``{` `            ``// Increment the count if``            ``// both even or both odd``            ``if` `((A[i] % 2 == 0 && A[j] % 2 == 0) ||``                ``(A[i] % 2 != 0 && A[j] % 2 != 0))``                ``count++;``        ``}``    ``}``    ``return` `count;``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ``int``[] A = { 1, 2, 3, 1, 3 };``    ``int` `n = A.Length;``    ``Console.Write(countPairs(A, n));``}``}` `// This code is contributed by shivanisinghss2110`

## Javascript

 ``
Output:
`6`

Efficient Approach:
Traverse the array and count and store even and odd numbers in the array and calculate the possible pairs from respective counts and display their sum.

Let the count of even and odd elements in the array be EC and OC respectively.
Count of even pairs = ( EC * ( EC – 1 ) ) / 2
Count of odd pairs = ( OC * ( OC – 1 ) ) / 2
Hence, total number of possible pairs = (( EC * ( EC – 1 ) ) + ( OC * ( OC – 1 ) ))/ 2

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach``#include ``using` `namespace` `std;` `int` `countPairs(``int` `A[], ``int` `n)``{``    ` `    ``// Store count of``    ``// even and odd elements``    ``int` `even = 0, odd = 0;``    ` `    ``for``(``int` `i = 0; i < n; i++)``    ``{``        ``if` `(A[i] % 2 == 0)``            ``even++;``        ``else``            ``odd++;``    ``}` `    ``return` `(even * (even - 1)) / 2 +``             ``(odd * (odd - 1)) / 2;``}` `// Driver code``int` `main()``{``    ``int` `A[] = { 1, 2, 3, 1, 3 };``    ``int` `n = ``sizeof``(A) / ``sizeof``(``int``);``    ` `    ``cout << countPairs(A, n);``}` `// This code is contributed by jrishabh99`

## Java

 `// Java program for the above approach` `import` `java.util.*;` `class` `GFG {` `    ``static` `int` `countPairs(``        ``int``[] A, ``int` `n)``    ``{``        ``// Store count of``        ``// even and odd elements``        ``int` `even = ``0``, odd = ``0``;` `        ``for` `(``int` `i = ``0``; i < n; i++) {` `            ``if` `(A[i] % ``2` `== ``0``)``                ``even++;``            ``else``                ``odd++;``        ``}` `        ``return` `(even * (even - ``1``)) / ``2``            ``+ (odd * (odd - ``1``)) / ``2``;``    ``}` `    ``// Driver Program``    ``public` `static` `void` `main(``        ``String[] args)``    ``{` `        ``int``[] A = { ``1``, ``2``, ``3``, ``1``, ``3` `};``        ``int` `n = A.length;``        ``System.out.println(``            ``countPairs(A, n));``    ``}``}`

## Python3

 `# Python3 program for the above approach` `# Function to return count of pairs``def` `countPairs(A, n):``    ` `    ``# Store count of``    ``# even and odd elements``    ``even, odd ``=` `0``, ``0``    ` `    ``for` `i ``in` `range``(``0``, n):``        ``if` `A[i] ``%` `2` `=``=` `0``:``            ``even ``=` `even ``+` `1``        ``else``:``            ``odd ``=` `odd ``+` `1` `    ``return` `((even ``*` `(even ``-` `1``)) ``/``/` `2` `+``              ``(odd ``*` `(odd ``-` `1``)) ``/``/` `2``)` `# Driver code``A ``=` `[ ``1``, ``2``, ``3``, ``1``, ``3` `]``n ``=` `len``(A)` `print``(countPairs(A, n))` `# This code is contributed by jrishabh99`

## C#

 `// C# program for the above approach``using` `System;` `class` `GFG{` `static` `int` `countPairs(``int``[] A, ``int` `n)``{``    ` `    ``// Store count of``    ``// even and odd elements``    ``int` `even = 0, odd = 0;` `    ``for``(``int` `i = 0; i < n; i++)``    ``{``    ``if` `(A[i] % 2 == 0)``        ``even++;``    ``else``        ``odd++;``    ``}` `    ``return` `(even * (even - 1)) / 2 +``            ``(odd * (odd - 1)) / 2;``}` `// Driver code``public` `static` `void` `Main()``{``    ``int``[] A = { 1, 2, 3, 1, 3 };``    ``int` `n = A.Length;``    ` `    ``Console.Write(countPairs(A, n));``}``}` `// This code is contributed by nidhi_biet`

## Javascript

 ``
Output:
`6`

Time complexity: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up