Skip to content
Related Articles

Related Articles

Improve Article

Check if all the elements can be made of same parity by inverting adjacent elements

  • Last Updated : 24 May, 2021
Geek Week

Given a binary matrix. In a single operation, you are allowed to choose two adjacent elements and invert their parity. The operation can be performed any number of times. Write a program to check if all the elements of the array can be converted into a single parity. 
Examples: 
 

Input: a[] = {1, 0, 1, 1, 0, 1} 
Output: Yes 
Invert 2nd and 3rd elements to get {1, 1, 0, 1, 0, 1} 
Invert 3rd and 4th elements to get {1, 1, 1, 0, 0, 1} 
Invert 4th and 5th elements to get {1, 1, 1, 1, 1, 1}
Input: a[] = {1, 1, 1, 0, 0, 0} 
Output: No 
 

 

Approach: Since only adjacent elements are needed to be flipped, hence the count of parities will give the answer to the question. Only even number of elements are flipped at a time, so if both the parity’s count is odd then it is not possible to make all the parity same else it is possible.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if parity
// can be made same or not
bool flipsPossible(int a[], int n)
{
 
    int count_odd = 0, count_even = 0;
 
    // Iterate and count the parity
    for (int i = 0; i < n; i++) {
 
        // Odd
        if (a[i] & 1)
            count_odd++;
 
        // Even
        else
            count_even++;
    }
 
    // Condition check
    if (count_odd % 2 && count_even % 2)
        return false;
 
    else
        return true;
}
 
// Drivers code
int main()
{
    int a[] = { 1, 0, 1, 1, 0, 1 };
    int n = sizeof(a) / sizeof(a[0]);
 
    if (flipsPossible(a, n))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java




// Java implementation of the approach
public class GFG
{
     
    // Function to check if parity
    // can be made same or not
    static boolean flipsPossible(int []a, int n)
    {
     
        int count_odd = 0, count_even = 0;
     
        // Iterate and count the parity
        for (int i = 0; i < n; i++)
        {
     
            // Odd
            if ((a[i] & 1) == 1)
                count_odd++;
     
            // Even
            else
                count_even++;
        }
     
        // Condition check
        if (count_odd % 2 == 1 && count_even % 2 == 1)
            return false;
     
        else
            return true;
    }
     
    // Drivers code
    public static void main (String[] args)
    {
        int []a = { 1, 0, 1, 1, 0, 1 };
        int n = a.length;
     
        if (flipsPossible(a, n))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 implementation of the approach
 
# Function to check if parity
# can be made same or not
def flipsPossible(a, n) :
 
    count_odd = 0; count_even = 0;
 
    # Iterate and count the parity
    for i in range(n) :
 
        # Odd
        if (a[i] & 1) :
            count_odd += 1;
 
        # Even
        else :
            count_even += 1;
 
    # Condition check
    if (count_odd % 2 and count_even % 2) :
        return False;
    else :
        return True;
 
# Driver Code
if __name__ == "__main__" :
 
    a = [ 1, 0, 1, 1, 0, 1 ];
     
    n = len(a);
 
    if (flipsPossible(a, n)) :
        print("Yes");
    else :
        print("No");
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to check if parity
    // can be made same or not
    static bool flipsPossible(int []a, int n)
    {
     
        int count_odd = 0, count_even = 0;
     
        // Iterate and count the parity
        for (int i = 0; i < n; i++)
        {
     
            // Odd
            if ((a[i] & 1) == 1)
                count_odd++;
     
            // Even
            else
                count_even++;
        }
     
        // Condition check
        if (count_odd % 2 == 1 && count_even % 2 == 1)
            return false;
     
        else
            return true;
    }
     
    // Drivers code
    public static void Main(String[] args)
    {
        int []a = { 1, 0, 1, 1, 0, 1 };
        int n = a.Length;
     
        if (flipsPossible(a, n))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// JavaScript implementation of the approach
 
     
// Function to check if parity
// can be made same or not
function flipsPossible(a, n){
 
 
    let count_odd = 0;
    let count_even = 0;
 
    // Iterate and count the parity
    for (let i = 0; i < n; i++)
    {
 
        // Odd
        if ((a[i] & 1) == 1)
            count_odd++;
        // Even
        else
            count_even++;
    }
     
    // Condition check
    if (count_odd % 2 == 1 && count_even % 2 == 1)
        return false;
    else
        return true;
}
     
// Drivers code
 
let a = [1, 0, 1, 1, 0, 1];
let n = a.length;
 
if (flipsPossible(a, n))
    document.write("Yes");
else
    document.write("No");
     
</script>
Output: 
Yes

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :