Given an integer array of N elements. The task is to find the number of ways to split the array into two equal sum sub-arrays of non-zero lengths.
Examples:
Input: arr[] = {0, 0, 0, 0}
Output: 3
Explanation:
All the possible ways are: { {{0}, {0, 0, 0}}, {{0, 0}, {0, 0}}, {{0, 0, 0}, {0}}
Therefore, the required output is 3.
Input: {1, -1, 1, -1}
Output: 1
Simple Solution: A simple solution is to generate all the possible contiguous sub-arrays pairs and find there sum. If their sum is the same, we will increase the count by one.
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: The idea is to take an auxiliary array say, aux[] to calculate the presum of the array such that for an index i aux[i] will store the sum of all elements from index 0 to index i.
By doing this we can calculate the left sum and right sum for every index of the array in constant time.
So, the idea is to:
- Find the sum of all the numbers of the array and store it in a variable say, S. If the sum is odd, then the answer will be 0.
- Traverse the array and keep calculating the sum of elements. At ith step, we will use the variable S to maintain sum of all the elements from index 0 to i.
- Calculate sum upto the ith index.
- If this sum equals S/2, increase the count of the number of ways by 1.
- Do this from i=0 to i=N-2.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int cntWays( int arr[], int n)
{
if (n == 1)
return 0;
int tot_sum = 0, sum = 0, ans = 0;
for ( int i = 0; i < n; i++)
tot_sum += arr[i];
for ( int i = 0; i < n - 1; i++) {
sum += arr[i];
if (sum == tot_sum / 2)
ans++;
}
return ans;
}
int main()
{
int arr[] = { 1, -1, 1, -1, 1, -1 };
int n = sizeof (arr) / sizeof ( int );
cout << cntWays(arr, n);
return 0;
}
|
Java
import java.util.*;
import java.io.*;
class GFG
{
static int cntWays( int arr[], int n)
{
if (n == 1 )
{
return 0 ;
}
int tot_sum = 0 , sum = 0 , ans = 0 ;
for ( int i = 0 ; i < n; i++)
{
tot_sum += arr[i];
}
for ( int i = 0 ; i < n - 1 ; i++)
{
sum += arr[i];
if (sum == tot_sum / 2 )
{
ans++;
}
}
return ans;
}
public static void main(String[] args)
{
int arr[] = { 1 , - 1 , 1 , - 1 , 1 , - 1 };
int n = arr.length;
System.out.println(cntWays(arr, n));
}
}
|
Python3
def cntWays(arr, n):
if (n = = 1 ):
return 0 ;
tot_sum = 0 ; sum = 0 ; ans = 0 ;
for i in range ( 0 ,n):
tot_sum + = arr[i];
for i in range ( 0 ,n - 1 ):
sum + = arr[i];
if ( sum = = tot_sum / 2 ):
ans + = 1 ;
return ans;
arr = [ 1 , - 1 , 1 , - 1 , 1 , - 1 ];
n = len (arr);
print (cntWays(arr, n));
|
C#
using System;
class GFG
{
static int cntWays( int []arr, int n)
{
if (n == 1)
{
return 0;
}
int tot_sum = 0, sum = 0, ans = 0;
for ( int i = 0; i < n; i++)
{
tot_sum += arr[i];
}
for ( int i = 0; i < n - 1; i++)
{
sum += arr[i];
if (sum == tot_sum / 2)
{
ans++;
}
}
return ans;
}
public static void Main()
{
int []arr = {1, -1, 1, -1, 1, -1};
int n = arr.Length;
Console.WriteLine(cntWays(arr, n));
}
}
|
Javascript
<script>
function cntWays(arr, n)
{
if (n == 1) return 0;
var tot_sum = 0,
sum = 0,
ans = 0;
for ( var i = 0; i < n; i++) tot_sum += arr[i];
for ( var i = 0; i < n - 1; i++) {
sum += arr[i];
if (sum == tot_sum / 2)
ans++;
}
return ans;
}
var arr = [1, -1, 1, -1, 1, -1];
var n = arr.length;
document.write(cntWays(arr, n));
</script>
|
Time Complexity: O(N), since there runs a loop from 0 to (n – 1)
Auxiliary Space: O(1), since no extra space has been taken.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!