Given an integer array of N elements. The task is to find the number of ways to split the array into two equal sum sub-arrays of non-zero lengths.

**Examples:**

Input:arr[] = {0, 0, 0, 0}Output:3Explanation:

All the possible ways are: { {{0}, {0, 0, 0}}, {{0, 0}, {0, 0}}, {{0, 0, 0}, {0}}

Therefore, the required output is 3.

Input:{1, -1, 1, -1}Output:1

**Simple Solution**: A simple solution is to generate all the possible contiguous sub-arrays pairs and find there sum. If their sum is the same, we will increase the count by one.**Time Complexity:** O(N^{2})**Auxiliary Space:** O(1)**Efficient Approach:** The idea is to take an auxiliary array say, aux[] to calculate the presum of the array such that for an index **i** aux[i] will store the sum of all elements from index 0 to index i.

By doing this we can calculate the left sum and right sum for every index of the array in constant time.

So, the idea is to:

- Find the sum of all the numbers of the array and store it in a variable say, S. If the sum is odd, then the answer will be 0.
- Traverse the array and keep calculating the sum of elements. At ith step, we will use the variable S to maintain sum of all the elements from index 0 to i.
- Calculate sum upto the ith index.
- If this sum equals S/2, increase the count of the number of ways by 1.

- Do this from i=0 to i=N-2.

Below is the implementation of the above approach:

## C++

`// C++ program to count the number of ways to` `// divide an array into two halves` `// with the same sum` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to count the number of ways to` `// divide an array into two halves` `// with same sum` `int` `cntWays(` `int` `arr[], ` `int` `n)` `{` ` ` `// if length of array is 1` ` ` `// answer will be 0 as we have` ` ` `// to split it into two` ` ` `// non-empty halves` ` ` `if` `(n == 1)` ` ` `return` `0;` ` ` `// variables to store total sum,` ` ` `// current sum and count` ` ` `int` `tot_sum = 0, sum = 0, ans = 0;` ` ` `// finding total sum` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `tot_sum += arr[i];` ` ` `// checking if sum equals total_sum/2` ` ` `for` `(` `int` `i = 0; i < n - 1; i++) {` ` ` `sum += arr[i];` ` ` `if` `(sum == tot_sum / 2)` ` ` `ans++;` ` ` `}` ` ` `return` `ans;` `}` `// Driver Code` `int` `main()` `{` ` ` `int` `arr[] = { 1, -1, 1, -1, 1, -1 };` ` ` `int` `n = ` `sizeof` `(arr) / ` `sizeof` `(` `int` `);` ` ` `cout << cntWays(arr, n);` ` ` `return` `0;` `}` |

*chevron_right*

*filter_none*

## Java

`// Java program to count the number of ways to` `// divide an array into two halves` `// with the same sum` `class` `GFG ` `{` ` ` `// Function to count the number of ways to` ` ` `// divide an array into two halves` ` ` `// with same sum` ` ` `static` `int` `cntWays(` `int` `arr[], ` `int` `n)` ` ` `{` ` ` `// if length of array is 1` ` ` `// answer will be 0 as we have` ` ` `// to split it into two` ` ` `// non-empty halves` ` ` `if` `(n == ` `1` `) ` ` ` `{` ` ` `return` `0` `;` ` ` `}` ` ` `// variables to store total sum,` ` ` `// current sum and count` ` ` `int` `tot_sum = ` `0` `, sum = ` `0` `, ans = ` `0` `;` ` ` `// finding total sum` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++) ` ` ` `{` ` ` `tot_sum += arr[i];` ` ` `}` ` ` `// checking if sum equals total_sum/2` ` ` `for` `(` `int` `i = ` `0` `; i < n - ` `1` `; i++) ` ` ` `{` ` ` `sum += arr[i];` ` ` `if` `(sum == tot_sum / ` `2` `)` ` ` `{` ` ` `ans++;` ` ` `}` ` ` `}` ` ` `return` `ans;` ` ` `}` ` ` `// Driver Code` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `int` `arr[] = {` `1` `, -` `1` `, ` `1` `, -` `1` `, ` `1` `, -` `1` `};` ` ` `int` `n = arr.length;` ` ` `System.out.println(cntWays(arr, n));` ` ` `}` `}` `// This code contributed by Rajput-Ji` |

*chevron_right*

*filter_none*

## Python3

`# Python program to count the number of ways to ` `# divide an array into two halves ` `# with the same sum ` `# Function to count the number of ways to ` `# divide an array into two halves ` `# with same sum ` `def` `cntWays(arr, n): ` ` ` `# if length of array is 1 ` ` ` `# answer will be 0 as we have ` ` ` `# to split it into two ` ` ` `# non-empty halves ` ` ` `if` `(n ` `=` `=` `1` `): ` ` ` `return` `0` `; ` ` ` `# variables to store total sum, ` ` ` `# current sum and count ` ` ` `tot_sum ` `=` `0` `; ` `sum` `=` `0` `; ans ` `=` `0` `; ` ` ` `# finding total sum ` ` ` `for` `i ` `in` `range` `(` `0` `,n): ` ` ` `tot_sum ` `+` `=` `arr[i]; ` ` ` `# checking if sum equals total_sum/2 ` ` ` `for` `i ` `in` `range` `(` `0` `,n` `-` `1` `):` ` ` `sum` `+` `=` `arr[i]; ` ` ` `if` `(` `sum` `=` `=` `tot_sum ` `/` `2` `):` ` ` `ans` `+` `=` `1` `; ` ` ` `return` `ans; ` `# Driver Code ` `arr ` `=` `[` `1` `, ` `-` `1` `, ` `1` `, ` `-` `1` `, ` `1` `, ` `-` `1` `]; ` `n ` `=` `len` `(arr); ` `print` `(cntWays(arr, n)); ` `# This code contributed by PrinciRaj1992 ` |

*chevron_right*

*filter_none*

## C#

`// C# program to count the number of ways to` `// divide an array into two halves with` `// the same sum` `using` `System; ` `class` `GFG ` `{` ` ` `// Function to count the number of ways to` ` ` `// divide an array into two halves` ` ` `// with same sum` ` ` `static` `int` `cntWays(` `int` `[]arr, ` `int` `n)` ` ` `{` ` ` `// if length of array is 1` ` ` `// answer will be 0 as we have` ` ` `// to split it into two` ` ` `// non-empty halves` ` ` `if` `(n == 1) ` ` ` `{` ` ` `return` `0;` ` ` `}` ` ` `// variables to store total sum,` ` ` `// current sum and count` ` ` `int` `tot_sum = 0, sum = 0, ans = 0;` ` ` `// finding total sum` ` ` `for` `(` `int` `i = 0; i < n; i++) ` ` ` `{` ` ` `tot_sum += arr[i];` ` ` `}` ` ` `// checking if sum equals total_sum/2` ` ` `for` `(` `int` `i = 0; i < n - 1; i++) ` ` ` `{` ` ` `sum += arr[i];` ` ` `if` `(sum == tot_sum / 2)` ` ` `{` ` ` `ans++;` ` ` `}` ` ` `}` ` ` `return` `ans;` ` ` `}` ` ` `// Driver Code` ` ` `public` `static` `void` `Main()` ` ` `{` ` ` `int` `[]arr = {1, -1, 1, -1, 1, -1};` ` ` `int` `n = arr.Length;` ` ` `Console.WriteLine(cntWays(arr, n));` ` ` `}` `}` `// This code contributed by anuj_67..` |

*chevron_right*

*filter_none*

**Output:**

2

**Time Complexity:** O(N)**Auxiliary Space:** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.