Skip to content
Related Articles

Related Articles

Count number of ways to arrange first N numbers
  • Difficulty Level : Hard
  • Last Updated : 06 Nov, 2020
GeeksforGeeks - Summer Carnival Banner

Count number of ways to arrange the first N natural numbers in a line such that the left-most number is always 1 and no two consecutive numbers have an absolute difference greater than 2.
Examples: 

Input: N = 4 
Output:
The only possible arrangements are (1, 2, 3, 4), 
(1, 2, 4, 3), (1, 3, 4, 2) and (1, 3, 2, 4).
Input: N = 6 
Output:

Naive approach: Generate all the permutations and count how many of them satisfy the given conditions.
Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of required arrangements
int countWays(int n)
{
 
    // Create a vector
    vector<int> a;
    int i = 1;
 
    // Store numbers from 1 to n
    while (i <= n)
        a.push_back(i++);
 
    // To store the count of ways
    int ways = 0;
 
    // Generate all the permutations
    // using next_permutation in STL
    do {
        // Initialize flag to true if first
        // element is 1 else false
        bool flag = (a[0] == 1);
 
        // Checking if the current permutation
        // satisfies the given conditions
        for (int i = 1; i < n; i++) {
 
            // If the current permutation is invalid
            // then set the flag to false
            if (abs(a[i] - a[i - 1]) > 2)
                flag = 0;
        }
 
        // If valid arrangement
        if (flag)
            ways++;
 
        // Generate the next permutation
    } while (next_permutation(a.begin(), a.end()));
 
    return ways;
}
 
// Driver code
int main()
{
    int n = 6;
 
    cout << countWays(n);
 
    return 0;
}

Java




// Java implementation of the
// above approach
import java.util.*;
class GFG{
 
// Function to return the count
// of required arrangements
static int countWays(int n)
{
  // Create a vector
  Vector<Integer> a =
         new Vector<>();
  int i = 1;
 
  // Store numbers from
  // 1 to n
  while (i <= n)
    a.add(i++);
 
  // To store the count
  // of ways
  int ways = 0;
 
  // Generate all the permutations
  // using next_permutation in STL
  do
  {
    // Initialize flag to true
    // if first element is 1
    // else false
    boolean flag = (a.get(0) == 1);
 
    // Checking if the current
    // permutation satisfies the
    // given conditions
    for (int j = 1; j < n; j++)
    {
      // If the current permutation
      // is invalid then set the
      // flag to false
      if (Math.abs(a.get(j) -
                   a.get(j - 1)) > 2)
        flag = false;
    }
 
    // If valid arrangement
    if (flag)
      ways++;
 
    // Generate the next permutation
  } while (next_permutation(a));
 
  return ways;
}
   
static boolean next_permutation(Vector<Integer> p)
{
  for (int a = p.size() - 2;
           a >= 0; --a)
    if (p.get(a) < p.get(a + 1))
      for (int b = p.size() - 1;; --b)
        if (p.get(b) > p.get(a))
        {
          int t = p.get(a);
          p.set(a, p.get(b));
          p.set(b, t);
 
          for (++a, b = p.size() - 1;
                 a < b; ++a, --b)
          {
            t = p.get(a);
            p.set(a, p.get(b));
            p.set(b, t);
          }
          return true;
        }
  return false;
}
 
// Driver code
public static void main(String[] args)
{
  int n = 6;
  System.out.print(countWays(n));
}
}
 
// This code is contributed by shikhasingrajput

C#




// C# implementation of the
// above approach
using System;
using System.Collections.Generic;
class GFG{
 
// Function to return the count
// of required arrangements
static int countWays(int n)
{
  // Create a vector
  List<int> a =
       new List<int>();
  int i = 1;
 
  // Store numbers from
  // 1 to n
  while (i <= n)
    a.Add(i++);
 
  // To store the count
  // of ways
  int ways = 0;
 
  // Generate all the
  // permutations using
  // next_permutation in STL
  do
  {
    // Initialize flag to true
    // if first element is 1
    // else false
    bool flag = (a[0] == 1);
 
    // Checking if the current
    // permutation satisfies the
    // given conditions
    for (int j = 1; j < n; j++)
    {
      // If the current permutation
      // is invalid then set the
      // flag to false
      if (Math.Abs(a[j] -
                   a[j - 1]) > 2)
        flag = false;
    }
 
    // If valid arrangement
    if (flag)
      ways++;
 
    // Generate the next
    // permutation
  } while (next_permutation(a));
 
  return ways;
}
   
static bool next_permutation(List<int> p)
{
  for (int a = p.Count - 2;
           a >= 0; --a)
    if (p[a] < p[a + 1])
      for (int b = p.Count - 1;; --b)
        if (p[b] > p[a])
        {
          int t = p[a];
          p[a] = p[b];
          p[b]  =  t;
 
          for (++a, b = p.Count - 1;
                 a < b; ++a, --b)
          {
            t = p[a];
            p[a] = p[b];
            p[b] = t;
          }
          return true;
        }
  return false;
}
 
// Driver code
public static void Main(String[] args)
{
  int n = 6;
  Console.Write(countWays(n));
}
}
 
// This code is contributed by Rajput-Ji
Output: 
9






 

Efficient approach: This problem can be solved using dynamic programming
A better linear approach to this problem relies on the following observation. Look for the position of 2. Let a[i] be the number of ways for n = i. There are three cases: 
 



  1. 12_____ – “2” in the second position.
  2. 1*2____ – “2” in the third position. 
    1**2___ – “2” in the fourth position is impossible because only possible way is (1342), which is same as case 3. 
    1***2__ – “2” in the fifth position is impossible because 1 must be followed by 3, 3 by 5 and 2 needs 4 before it so it becomes 13542, again as case 3.
  3. 1_(i – 2)terms___2 – “2” in the last position (1357642 and similar)

For each case, the following are the sub-task: 
Adding 1 to each term of a[i – 1] i.e. (1__(i – 1) terms__). 
As for 1_2_____ there can only be one 1324___(i – 4) terms____ i.e. a[i – 3].
Hence, the recurrence relation will be, 
 

a[i] = a[i – 1] + a[i – 3] + 1 

And the base cases will be: 
 

a[0] = 0 
a[1] = 1 
a[2] = 1 

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of required arrangements
int countWays(int n)
{
    // Create the dp array
    int dp[n + 1];
 
    // Initialize the base cases
    // as explained above
    dp[0] = 0;
    dp[1] = 1;
 
    // (12) as the only possibility
    dp[2] = 1;
 
    // Generate answer for greater values
    for (int i = 3; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 3] + 1;
    }
 
    // dp[n] contains the desired answer
    return dp[n];
}
 
// Driver code
int main()
{
    int n = 6;
 
    cout << countWays(n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
// Function to return the count
// of required arrangements
static int countWays(int n)
{
    // Create the dp array
    int []dp = new int[n + 1];
 
    // Initialize the base cases
    // as explained above
    dp[0] = 0;
    dp[1] = 1;
 
    // (12) as the only possibility
    dp[2] = 1;
 
    // Generate answer for greater values
    for (int i = 3; i <= n; i++)
    {
        dp[i] = dp[i - 1] + dp[i - 3] + 1;
    }
 
    // dp[n] contains the desired answer
    return dp[n];
}
 
// Driver code
public static void main(String args[])
{
    int n = 6;
    System.out.println(countWays(n));
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python implementation of the approach
 
# Function to return the count
# of required arrangements
def countWays(n):
     
    # Create the dp array
    dp = [0 for i in range(n + 1)]
 
    # Initialize the base cases
    # as explained above
    dp[0] = 0
    dp[1] = 1
 
    # (12) as the only possibility
    dp[2] = 1
 
    # Generate answer for greater values
    for i in range(3, n + 1):
        dp[i] = dp[i - 1] + dp[i - 3] + 1
 
    # dp[n] contains the desired answer
    return dp[n]
 
# Driver code
n = 6
 
print(countWays(n))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
class GFG
{
 
// Function to return the count
// of required arrangements
static int countWays(int n)
{
    // Create the dp array
    int []dp = new int[n + 1];
 
    // Initialize the base cases
    // as explained above
    dp[0] = 0;
    dp[1] = 1;
 
    // (12) as the only possibility
    dp[2] = 1;
 
    // Generate answer for greater values
    for (int i = 3; i <= n; i++)
    {
        dp[i] = dp[i - 1] + dp[i - 3] + 1;
    }
 
    // dp[n] contains the desired answer
    return dp[n];
}
 
// Driver code
public static void Main()
{
    int n = 6;
    Console.WriteLine(countWays(n));
}
}
 
// This code is contributed by Code@Mech.
Output: 
9






 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :