Count n digit numbers divisible by given number

Given number of digit n and a number, the task is to count all the numbers which are divisible by that number and having n digit.

Examples :

Input : n = 2, number = 7
Output : 9
There are nine n digit numbers that
are divisible by 7. Numbers are 14, 
21, 28, 35, 42, 49, .... 70.

Input : n = 3, number = 7
Output : 128

Input : n = 4, number = 4
Output : 2250

Native Approach: Traverse through all n digit numbers. For every number check for divisibility,

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Simple CPP program to count n digit 
// divisible numbers.
#include <cmath>
#include <iostream>
using namespace std;
  
// Returns count of n digit numbers
// divisible by 'number'
int numberofterm(int n, int number)
{
    // compute the first and last term
    int firstnum = pow(10, n - 1);
    int lastnum = pow(10, n);
  
    // count total number of which having
    // n digit and divisible by number
    int count = 0;
    for (int i = firstnum; i < lastnum; i++) 
        if (i % number == 0)
            count++; 
    return count;
}
  
// Driver code
int main()
{
    int n = 3, num = 7;
    cout << numberofterm(n, num) << "\n";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Simple Java program to count n digit 
// divisible numbers.
import java.io.*;
  
class GFG {
      
    // Returns count of n digit numbers
    // divisible by 'number'
    static int numberofterm(int n, int number)
    {
        // compute the first and last term
        int firstnum = (int)Math.pow(10, n - 1);
        int lastnum = (int)Math.pow(10, n);
      
        // count total number of which having
        // n digit and divisible by number
        int count = 0;
        for (int i = firstnum; i < lastnum; i++) 
            if (i % number == 0)
                count++; 
        return count;
    }
      
    // Driver code
    public static void main (String[] args) 
    {
        int n = 3, num = 7;
        System.out.println(numberofterm(n, num));
    }
}
  
// This code is contributed by Ajit.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Simple Python 3 program to count n digit 
# divisible numbers
  
import math
  
# Returns count of n digit 
# numbers divisible by number
def numberofterm(n, number):
  
    # compute the first and last term
    firstnum = math.pow(10, n - 1)
    lastnum = math.pow(10, n)
  
    # count total number of which having
    # n digit and divisible by number
    count = 0
    for i in range(int(firstnum), int(lastnum)): 
        if (i % number == 0):
            count += 1
    return count
  
  
# Driver code
n = 3 
num = 7
print(numberofterm(n, num))
  
# This article is contributed
# by Smitha Dinesh Semwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Simple C# program to count n digit 
// divisible numbers.
using System;
  
class GFG 
{
      
    // Returns count of n digit numbers
    // divisible by 'number'
    static int numberofterm(int n, int number)
    {
        // compute the first and last term
        int firstnum = (int)Math.Pow(10, n - 1);
        int lastnum = (int)Math.Pow(10, n);
      
        // count total number of which having
        // n digit and divisible by number
        int count = 0;
        for (int i = firstnum; i < lastnum; i++) 
            if (i % number == 0)
                count++; 
        return count;
    }
      
    // Driver code
    public static void Main () 
    {
        int n = 3, num = 7;
        Console.Write(numberofterm(n, num));
    }
}
  
// This code is contributed by nitin mittal

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Simple php program to count n digit 
// divisible numbers.
  
// Returns count of n digit numbers
// divisible by 'number'
function numberofterm($n, $number)
{
      
    // compute the first and last term
    $firstnum = pow(10, $n - 1);
    $lastnum = pow(10, $n);
  
    // count total number of which having
    // n digit and divisible by number
    $count = 0;
    for ($i = $firstnum; $i < $lastnum; $i++) 
        if ($i % $number == 0)
            $count++; 
    return $count;
}
  
    // Driver code
    $n = 3;
    $num = 7;
    echo numberofterm($n, $num);
      
// This code is contributed by mits
?>

chevron_right


Output:

128

Efficient Approach : Find the first and last terms divisible, then apply the below formula

Count of divisible = (lastnumber – firstnumber)/number + 1

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient CPP program to count n digit 
// divisible numbers.
#include <cmath>
#include <iostream>
using namespace std;
  
// find the number of term
int numberofterm(int digit, int number)
{
    // compute the first and last term
    int firstnum = pow(10, digit - 1);
    int lastnum = pow(10, digit);
  
    // first number which is divisible by given number
    firstnum = (firstnum - firstnum % number) + number;
  
    // last number which is divisible by given number
    lastnum = (lastnum - lastnum % number);
  
    // Apply the formula here
    return ((lastnum - firstnum) / number + 1);
}
  
int main()
{
    int n = 3;
    int number = 7;
    cout << numberofterm(n, number) << "\n";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient Java program to count n digit 
// divisible numbers.
import java.io.*;
  
class GFG {
      
    // find the number of term
    static int numberofterm(int digit, int number)
    {
        // compute the first and last term
        int firstnum = (int)Math.pow(10, digit - 1);
        int lastnum = (int)Math.pow(10, digit);
      
        // first number which is divisible by given number
        firstnum = (firstnum - firstnum % number) + number;
      
        // last number which is divisible by given number
        lastnum = (lastnum - lastnum % number);
      
        // Apply the formula here
        return ((lastnum - firstnum) / number + 1);
    }
  
    // Driver code
    public static void main (String[] args) 
    {
        int n = 3;
        int number = 7;
        System.out.println(numberofterm(n, number));
    }
}
  
// This code is contributed by Ajit.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Efficient Python program to  
# count n digit divisible numbers.
  
# Find the number of term
def numberofterm(digit, number):
      
    # compute the first and last term
    firstnum = pow(10, digit - 1)
    lastnum = pow(10, digit)
  
    # First number which is divisible by given number
    firstnum = (firstnum - firstnum % number) + number
  
    # last number which is divisible by given number
    lastnum = (lastnum - lastnum % number)
  
    # Apply the formula here
    return ((lastnum - firstnum) // number + 1);
  
# Driver code
n = 3; number = 7
print(numberofterm(n, number))
  
# This code is contributed by Ajit.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient C# program to count n digit 
// divisible numbers.
using System;
  
class GFG {
      
    // find the number of term
    static int numberofterm(int digit, 
                            int number)
    {
          
        // compute the first and 
        // last term
        int firstnum = (int)Math.Pow(10,
                             digit - 1);
                               
        int lastnum = (int)Math.Pow(10, 
                                digit);
      
        // first number which is divisible
        // by given number
        firstnum = (firstnum - firstnum 
                      % number) + number;
      
        // last number which is divisible
        // by given number
        lastnum = (lastnum - lastnum
                              % number);
      
        // Apply the formula here
        return ((lastnum - firstnum)
                          / number + 1);
    }
  
    // Driver code
    public static void Main () 
    {
        int n = 3;
        int number = 7;
          
        Console.WriteLine(
             numberofterm(n, number));
    }
}
  
// This code is contributed by anuj_67.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Efficient PHP program 
// to count n digit 
// divisible numbers.
  
// find the number of term
function numberofterm($digit
                      $number)
{
    // compute the first
    // and last term
    $firstnum = pow(10, $digit - 1);
    $lastnum = pow(10, $digit);
  
    // first number which is 
    // divisible by given number
    $firstnum = ($firstnum - $firstnum
                 $number) + $number;
  
    // last number which is 
    // divisible by given number
    $lastnum = ($lastnum - $lastnum
                           $number);
  
    // Apply the formula here
    return (($lastnum - $firstnum) / 
                        $number + 1);
}
  
// Driver Code
$n = 3;
$number = 7;
echo (numberofterm($n, $number));
  
// This code is contributed by 
// Manish Shaw(manishshaw1)
?>

chevron_right


Output:

128


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.