Skip to content
Related Articles

Related Articles

Improve Article

Count different Bitwise OR values of equal length strings S1 and S2 by swapping exactly one pair of characters from the first string

  • Last Updated : 23 Jul, 2021

Given two binary strings S1 and S2, both of length N, the task is to count the number of different values of Bitwise OR other than the Bitwise OR of the original strings S1 and S2 by swapping exactly one pair of characters from the string S1.

Examples:

Input: S1 = “1100”, S2 = “0011”
Output: 4
Explanation: Bitwise OR of S1 and S2, if no swapping is performed is “1111”. 
Below are swapping of characters performed to get the different values of Bitwise OR:

  • If the characters at 0th and 2nd index are swapped, then string S1 modifies to “0110”. Now, the Bitwise OR of both the string is “0111”.
  • If the characters at 0th and 3rd index are swapped, then string S1 modifies to “0101”. Now, the Bitwise OR of both the string is”0111″.
  • If the characters at 1st and 2nd index are swapped, then string S1 modifies to “1010”. Now, the Bitwise OR of both the string is “1011”.
  • If the characters at 1st and 3rd index are swapped, then string S1 modifies to “1001”. Now, the Bitwise OR of both the string is”1011″.

After the above steps, all the Bitwise-OR are different from the Bitwise OR of the original string. Therefore, the total count is 4.

Input: S1 = “01001”, S2 = “11011”
Output: 2



Approach: The given problem can be solved based on the following observations:

  • If the same character is swapped in the string S1, then it will not affect the bitwise OR.
  • If the different characters are swapped in the string S1 let say S1[i] = ‘0’ and S2[j] = ‘1’ then the bitwise OR of the value is changed as per the following rules:
    • If S2[i] = ‘0’ and S2[j] = ‘0’.
    • If S2[i] = ‘1’ and S2[j] = ‘0’.
    • If S2[i] = ‘0’ and S2[j] = ‘1’.

From the above observations, Follow the below steps to solve the problem:

  • Initialize four variable, say t00, t10, t11, t01 that stores the number of indexes i such that S1[i] = ‘0’ and S2[i] = ‘0’, S1[i] = ‘1’ and S2[i] = ‘0’, S1[i] = ‘1’ and S2[i] = ‘1’, and S1[i] = ‘0’ and S2[i] = ‘1’ respectively.
  • Traverse the given strings S1 and S2, and increment the value of t00, t10, t11, t01 as per the following:
    • If S1[i] = ‘0’ and S2[i] =’0′, then increment the value of t00 by 1.
    • If S1[i] = ‘1’ and S2[i] = ‘0’, then increment the value of t10 by 1.
    • If S1[i] = ‘1’ and S2[i] = ‘1’, then increment the value of t11 by 1.
    • If S1[i] = ‘0’ and S2[i] = ‘1’, then increment the value of t01 by 1.
  • After completing the above steps, print the value of t00 * t10 + t01 * t10 + t00 * t11 as the resultant number of swaps required having different Bitwise OR from the original Bitwise OR.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number of ways
// to obtain different Bitwise OR
void differentBitwiseOR(string s1,
                        string s2)
{
    int n = s1.size();
 
    // Stores the count of pairs t00,
    // t10, t01, t11
    int t00 = 0, t10 = 0, t01 = 0, t11 = 0;
 
    // Traverse the characters of
    // the string S1 and S2
    for (int i = 0; i < n; i++) {
 
        // Count the pair (0, 0)
        if (s1[i] == '0'
            && s2[i] == '0') {
            t00++;
        }
 
        // Count the pair (1, 0)
        if (s1[i] == '1'
            && s2[i] == '0') {
            t10++;
        }
 
        // Count the pair (1, 1)
        if (s1[i] == '1'
            && s2[i] == '1') {
            t11++;
        }
 
        // Count the pair (0, 1)
        if (s1[i] == '0'
            && s2[i] == '1') {
            t01++;
        }
    }
 
    // Number of ways to calculate the
    // different bitwise OR
    int ans = t00 * t10 + t01 * t10
              + t00 * t11;
 
    // Print the result
    cout << ans;
}
 
// Driver Code
int main()
{
    string S1 = "01001";
    string S2 = "11011";
    differentBitwiseOR(S1, S2);
 
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to find the number of ways
// to obtain different Bitwise OR
static void differentBitwiseOR(String s1, String s2)
{
    int n = s1.length();
 
    // Stores the count of pairs t00,
    // t10, t01, t11
    int t00 = 0, t10 = 0, t01 = 0, t11 = 0;
 
    // Traverse the characters of
    // the string S1 and S2
    for(int i = 0; i < n; i++)
    {
         
        // Count the pair (0, 0)
        if (s1.charAt(i) == '0' &&
            s2.charAt(i) == '0')
        {
            t00++;
        }
 
        // Count the pair (1, 0)
        if (s1.charAt(i) == '1' &&
            s2.charAt(i) == '0')
        {
            t10++;
        }
 
        // Count the pair (1, 1)
        if (s1.charAt(i) == '1' &&
            s2.charAt(i) == '1')
        {
            t11++;
        }
 
        // Count the pair (0, 1)
        if (s1.charAt(i) == '0' &&
            s2.charAt(i) == '1')
        {
            t01++;
        }
    }
 
    // Number of ways to calculate the
    // different bitwise OR
    int ans = t00 * t10 + t01 * t10 + t00 * t11;
 
    // Print the result
    System.out.print(ans);
}
 
// Driver Code
public static void main(String[] args)
{
    String S1 = "01001";
    String S2 = "11011";
 
    differentBitwiseOR(S1, S2);
}
}
 
// This code is contributed by subhammahato348

Python3




# Python program for the above approach
 
# Function to find the number of ways
# to obtain different Bitwise OR
def differentBitwiseOR(s1, s2):
    n = len(s1)
 
    # Stores the count of pairs t00,
    # t10, t01, t11
    t00 = 0
    t10 = 0
    t01 = 0
    t11 = 0
 
    # Traverse the characters of
    # the string S1 and S2
    for i in range(n):
 
        # Count the pair (0, 0)
        if (s1[i] == '0'  and s2[i] == '0'):
            t00 += 1
 
        # Count the pair (1, 0)
        if (s1[i] == '1' and s2[i] == '0'):
                t10 += 1
 
        # Count the pair (1, 1)
        if (s1[i] == '1' and s2[i] == '1'):
                t11 += 1
 
        # Count the pair (0, 1)
        if (s1[i] == '0' and s2[i] == '1'):
                t01 += 1
     
 
    # Number of ways to calculate the
    # different bitwise OR
    ans = t00 * t10 + t01 * t10 + t00 * t11
 
    # Print the result
    print(ans)
 
# Driver Code
S1 = "01001"
S2 = "11011"
differentBitwiseOR(S1, S2)
 
# This code is contributed by _saurabh_jaiswal

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the number of ways
// to obtain different Bitwise OR
static void differentBitwiseOR(String s1,
                               String s2)
{
    int n = s1.Length;
 
    // Stores the count of pairs t00,
    // t10, t01, t11
    int t00 = 0, t10 = 0, t01 = 0, t11 = 0;
 
    // Traverse the characters of
    // the string S1 and S2
    for(int i = 0; i < n; i++)
    {
         
        // Count the pair (0, 0)
        if (s1[i] == '0' && s2[i] == '0')
        {
            t00++;
        }
 
        // Count the pair (1, 0)
        if (s1[i] == '1' && s2[i] == '0')
        {
            t10++;
        }
 
        // Count the pair (1, 1)
        if (s1[i] == '1' && s2[i] == '1')
        {
            t11++;
        }
 
        // Count the pair (0, 1)
        if (s1[i] == '0' && s2[i] == '1')
        {
            t01++;
        }
    }
 
    // Number of ways to calculate the
    // different bitwise OR
    int ans = t00 * t10 + t01 * t10 + t00 * t11;
 
    // Print the result
    Console.Write(ans);
}
 
// Driver Code
public static void Main()
{
    String S1 = "01001";
    String S2 = "11011";
     
    differentBitwiseOR(S1, S2);
}
}
 
// This code is contributed by subhammahato348

Javascript




<script>
  
        // JavaScript program for the above approach
 
        // Function to find the number of ways
        // to obtain different Bitwise OR
        function differentBitwiseOR(s1, s2) {
            let n = s1.length;
 
            // Stores the count of pairs t00,
            // t10, t01, t11
            let t00 = 0, t10 = 0, t01 = 0, t11 = 0;
 
            // Traverse the characters of
            // the string S1 and S2
            for (let i = 0; i < n; i++) {
 
                // Count the pair (0, 0)
                if (s1[i] == '0'
                    && s2[i] == '0') {
                    t00++;
                }
 
                // Count the pair (1, 0)
                if (s1[i] == '1'
                    && s2[i] == '0') {
                    t10++;
                }
 
                // Count the pair (1, 1)
                if (s1[i] == '1'
                    && s2[i] == '1') {
                    t11++;
                }
 
                // Count the pair (0, 1)
                if (s1[i] == '0'
                    && s2[i] == '1') {
                    t01++;
                }
            }
 
            // Number of ways to calculate the
            // different bitwise OR
            let ans = t00 * t10 + t01 * t10
                + t00 * t11;
 
            // Print the result
            document.write(ans);
        }
 
        // Driver Code
        let S1 = "01001";
        let S2 = "11011";
        differentBitwiseOR(S1, S2);
 
 
 
 
  // This code is contributed by Potta Lokesh
   
</script>
Output: 
2

 

Time Complexity: O(N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :