Compute the natural logarithm of one plus each element in floating-point accuracy Using NumPy

 Let’s see the program for computing the natural logarithm of one plus each element of a given array in floating-point accuracy using NumPy library.

For doing this task we are using numpy.log1p() function of NumPy. This function returns the array of natural logarithm of one plus each element of the input array.

Syntax: numpy.log1p(arr, out = None, *, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None, ufunc ‘log1p’)

Now, let’s see an example:

Example 1:



Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import numpy library
import numpy as np
  
# Create a numpy array
arr = np.array([1e-90, 1e-100])
  
# Applying the function
rslt = np.log1p(arr)
  
print(rslt)

chevron_right


Output:

[1.e-090 1.e-100]

Example 2:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import numpy library
import numpy as np
  
# Create a numpy array
arr = np.array([1, 2, 3, 4])
  
# Applying the function
rslt = np.log1p(arr)
  
print(rslt)

chevron_right


Output:

[0.69314718 1.09861229 1.38629436 1.60943791]

Example 3:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import numpy library
import numpy as np
  
# Create a numpy array
arr = np.array([1, 1e-1, 3, 1e-0])
  
# Applying the function
rslt = np.log1p(arr)
  
print(rslt)

chevron_right


Output:

[0.69314718 0.09531018 1.38629436 0.69314718]



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.