# Compute the natural logarithm of one plus each element in floating-point accuracy Using NumPy

• Last Updated : 02 Sep, 2020

Let’s see the program for computing the natural logarithm of one plus each element of a given array in floating-point accuracy using NumPy library.

For doing this task we are using numpy.log1p() function of NumPy. This function returns the array of natural logarithm of one plus each element of the input array.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Syntax: numpy.log1p(arr, out = None, *, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None, ufunc ‘log1p’)

Now, let’s see an example:

Example 1:

## Python3

 `# Import numpy library``import` `numpy as np`` ` `# Create a numpy array``arr ``=` `np.array([``1e``-``90``, ``1e``-``100``])`` ` `# Applying the function``rslt ``=` `np.log1p(arr)`` ` `print``(rslt)`

Output:

`[1.e-090 1.e-100]`

Example 2:

## Python3

 `# Import numpy library``import` `numpy as np`` ` `# Create a numpy array``arr ``=` `np.array([``1``, ``2``, ``3``, ``4``])`` ` `# Applying the function``rslt ``=` `np.log1p(arr)`` ` `print``(rslt)`

Output:

`[0.69314718 1.09861229 1.38629436 1.60943791]`

Example 3:

## Python3

 `# Import numpy library``import` `numpy as np`` ` `# Create a numpy array``arr ``=` `np.array([``1``, ``1e``-``1``, ``3``, ``1e``-``0``])`` ` `# Applying the function``rslt ``=` `np.log1p(arr)`` ` `print``(rslt)`

Output:

`[0.69314718 0.09531018 1.38629436 0.69314718]`

My Personal Notes arrow_drop_up