# Check whether a node is leaf node or not for multiple queries

Given a tree with N vertices numbered from 0 to N â€“ 1 where 0 is the root node. The task is to check if a node is leaf node or not for multiple queries.
Examples:

```Input:
0
/   \
1      2
/  \
3    4
/
5
q[] = {0, 3, 4, 5}
Output:
No
Yes
No
Yes
From the graph, 2, 3 and 5 are the only leaf nodes.```

Approach: Store the degree of all the vertices in an array degree[]. For each edge from A to B, degree[A] and degree[B] are incremented by 1. Now every node which not a root node and it has a degree of 1 is a leaf node and all the other nodes are not.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach` `#include ` `using` `namespace` `std;`   `// Function to calculate the degree of all the vertices` `void` `init(``int` `degree[], vector > edges, ``int` `n)` `{` `    ``// Initializing degree of all the vertices as 0` `    ``for` `(``int` `i = 0; i < n; i++) {` `        ``degree[i] = 0;` `    ``}`   `    ``// For each edge from A to B, degree[A] and degree[B]` `    ``// are increased by 1` `    ``for` `(``int` `i = 0; i < edges.size(); i++) {` `        ``degree[edges[i].first]++;` `        ``degree[edges[i].second]++;` `    ``}` `}`   `// Function to perform the queries` `void` `performQueries(vector > edges,` `                    ``vector<``int``> q, ``int` `n)` `{` `    ``// To store the of degree` `    ``// of all the vertices` `    ``int` `degree[n];`   `    ``// Calculate the degree for all the vertices` `    ``init(degree, edges, n);`   `    ``// For every query` `    ``for` `(``int` `i = 0; i < q.size(); i++) {`   `        ``int` `node = q[i];` `        ``if` `(node == 0) {` `            ``cout << ``"No\n"``;` `            ``continue``;` `        ``}` `        ``// If the current node has 1 degree` `        ``if` `(degree[node] == 1)` `            ``cout << ``"Yes\n"``;` `        ``else` `            ``cout << ``"No\n"``;` `    ``}` `}`   `// Driver code` `int` `main()` `{`   `    ``// Number of vertices` `    ``int` `n = 6;`   `    ``// Edges of the tree` `    ``vector > edges = {` `        ``{ 0, 1 }, { 0, 2 }, { 1, 3 }, { 1, 4 }, { 4, 5 }` `    ``};`   `    ``// Queries` `    ``vector<``int``> q = { 0, 3, 4, 5 };`   `    ``// Perform the queries` `    ``performQueries(edges, q, n);`   `    ``return` `0;` `}`

## Java

 `// Java implementation of the approach` `import` `java.util.*;`   `class` `GFG ` `{` `static` `class` `pair` `{ ` `    ``int` `first, second; ` `    ``public` `pair(``int` `first, ``int` `second) ` `    ``{ ` `        ``this``.first = first; ` `        ``this``.second = second; ` `    ``} ` `} `   `// Function to calculate the degree ` `// of all the vertices` `static` `void` `init(``int` `degree[],` `                     ``pair[] edges, ``int` `n)` `{` `    ``// Initializing degree of ` `    ``// all the vertices as 0` `    ``for` `(``int` `i = ``0``; i < n; i++) ` `    ``{` `        ``degree[i] = ``0``;` `    ``}`   `    ``// For each edge from A to B, ` `    ``// degree[A] and degree[B]` `    ``// are increased by 1` `    ``for` `(``int` `i = ``0``; i < edges.length; i++) ` `    ``{` `        ``degree[edges[i].first]++;` `        ``degree[edges[i].second]++;` `    ``}` `}`   `// Function to perform the queries` `static` `void` `performQueries(pair [] edges,` `                           ``int` `[]q, ``int` `n)` `{` `    ``// To store the of degree` `    ``// of all the vertices` `    ``int` `[]degree = ``new` `int``[n];`   `    ``// Calculate the degree for all the vertices` `    ``init(degree, edges, n);`   `    ``// For every query` `    ``for` `(``int` `i = ``0``; i < q.length; i++)` `    ``{`   `        ``int` `node = q[i];` `        ``if` `(node == ``0``)` `        ``{` `            ``System.out.println(``"No"``);` `            ``continue``;` `        ``}` `        `  `        ``// If the current node has 1 degree` `        ``if` `(degree[node] == ``1``)` `            ``System.out.println(``"Yes"``);` `        ``else` `            ``System.out.println(``"No"``);` `    ``}` `}`   `// Driver code` `public` `static` `void` `main(String[] args)` `{` `    ``// Number of vertices` `    ``int` `n = ``6``;`   `    ``// Edges of the tree` `    ``pair[] edges = {``new` `pair(``0``, ``1``), ` `                    ``new` `pair(``0``, ``2``),` `                    ``new` `pair(``1``, ``3``), ` `                    ``new` `pair(``1``, ``4``), ` `                    ``new` `pair(``4``, ``5``)};`   `    ``// Queries` `    ``int` `[]q = { ``0``, ``3``, ``4``, ``5` `};`   `    ``// Perform the queries` `    ``performQueries(edges, q, n);` `}` `}`   `// This code is contributed by Rajput-Ji`

## Python3

 `# Python3 implementation of the approach `   `# Function to calculate the degree` `# of all the vertices ` `def` `init(degree, edges, n) : `   `    ``# Initializing degree of` `    ``# all the vertices as 0 ` `    ``for` `i ``in` `range``(n) :` `        ``degree[i] ``=` `0``; `   `    ``# For each edge from A to B, ` `    ``# degree[A] and degree[B] ` `    ``# are increased by 1 ` `    ``for` `i ``in` `range``(``len``(edges)) :` `        ``degree[edges[i][``0``]] ``+``=` `1``; ` `        ``degree[edges[i][``1``]] ``+``=` `1``; `   `# Function to perform the queries ` `def` `performQueries(edges, q, n) : `   `    ``# To store the of degree ` `    ``# of all the vertices ` `    ``degree ``=` `[``0``] ``*` `n; `   `    ``# Calculate the degree for all the vertices ` `    ``init(degree, edges, n); `   `    ``# For every query ` `    ``for` `i ``in` `range``(``len``(q)) :`   `        ``node ``=` `q[i]; ` `        ``if` `(node ``=``=` `0``) :` `            ``print``(``"No"``); ` `            ``continue``; `   `        ``# If the current node has 1 degree ` `        ``if` `(degree[node] ``=``=` `1``) :` `            ``print``(``"Yes"``); ` `        ``else` `:` `            ``print``(``"No"``); `   `# Driver code ` `if` `__name__ ``=``=` `"__main__"` `: `   `    ``# Number of vertices ` `    ``n ``=` `6``; `   `    ``# Edges of the tree ` `    ``edges ``=` `[[ ``0``, ``1` `], [ ``0``, ``2` `], ` `             ``[ ``1``, ``3` `], [ ``1``, ``4` `], ` `             ``[ ``4``, ``5` `]]; `   `    ``# Queries ` `    ``q ``=` `[ ``0``, ``3``, ``4``, ``5` `]; `   `    ``# Perform the queries ` `    ``performQueries(edges, q, n); `   `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach` `using` `System;` `                    `  `class` `GFG ` `{` `public` `class` `pair` `{ ` `    ``public` `int` `first, second; ` `    ``public` `pair(``int` `first, ``int` `second) ` `    ``{ ` `        ``this``.first = first; ` `        ``this``.second = second; ` `    ``} ` `} `   `// Function to calculate the degree ` `// of all the vertices` `static` `void` `init(``int` `[]degree,` `                 ``pair[] edges, ``int` `n)` `{` `    ``// Initializing degree of ` `    ``// all the vertices as 0` `    ``for` `(``int` `i = 0; i < n; i++) ` `    ``{` `        ``degree[i] = 0;` `    ``}`   `    ``// For each edge from A to B, ` `    ``// degree[A] and degree[B]` `    ``// are increased by 1` `    ``for` `(``int` `i = 0; i < edges.Length; i++) ` `    ``{` `        ``degree[edges[i].first]++;` `        ``degree[edges[i].second]++;` `    ``}` `}`   `// Function to perform the queries` `static` `void` `performQueries(pair [] edges,` `                            ``int` `[]q, ``int` `n)` `{` `    ``// To store the of degree` `    ``// of all the vertices` `    ``int` `[]degree = ``new` `int``[n];`   `    ``// Calculate the degree for all the vertices` `    ``init(degree, edges, n);`   `    ``// For every query` `    ``for` `(``int` `i = 0; i < q.Length; i++)` `    ``{`   `        ``int` `node = q[i];` `        ``if` `(node == 0)` `        ``{` `            ``Console.WriteLine(``"No"``);` `            ``continue``;` `        ``}` `        `  `        ``// If the current node has 1 degree` `        ``if` `(degree[node] == 1)` `            ``Console.WriteLine(``"Yes"``);` `        ``else` `            ``Console.WriteLine(``"No"``);` `    ``}` `}`   `// Driver code` `public` `static` `void` `Main(String[] args)` `{` `    ``// Number of vertices` `    ``int` `n = 6;`   `    ``// Edges of the tree` `    ``pair[] edges = {``new` `pair(0, 1), ` `                    ``new` `pair(0, 2),` `                    ``new` `pair(1, 3), ` `                    ``new` `pair(1, 4), ` `                    ``new` `pair(4, 5)};`   `    ``// Queries` `    ``int` `[]q = { 0, 3, 4, 5 };`   `    ``// Perform the queries` `    ``performQueries(edges, q, n);` `}` `}`   `// This code is contributed by 29AjayKumar`

## Javascript

 ``

Output:

```No
Yes
No
Yes```

Time complexity: O(n)
Auxiliary Space: O(n).

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next