Given a tree with N vertices numbered from 0 to N – 1 where 0 is the root node. The task is to check if a node is leaf node or not for multiple queries.
Examples:
Input:
0
/ \
1 2
/ \
3 4
/
5
q[] = {0, 3, 4, 5}
Output:
No
Yes
No
Yes
From the graph, 2, 3 and 5 are the only leaf nodes.
Approach: Store the degree of all the vertices in an array degree[]. For each edge from A to B, degree[A] and degree[B] are incremented by 1. Now every node which not a root node and it has a degree of 1 is a leaf node and all the other nodes are not.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void init( int degree[], vector<pair< int , int > > edges, int n)
{
for ( int i = 0; i < n; i++) {
degree[i] = 0;
}
for ( int i = 0; i < edges.size(); i++) {
degree[edges[i].first]++;
degree[edges[i].second]++;
}
}
void performQueries(vector<pair< int , int > > edges,
vector< int > q, int n)
{
int degree[n];
init(degree, edges, n);
for ( int i = 0; i < q.size(); i++) {
int node = q[i];
if (node == 0) {
cout << "No\n" ;
continue ;
}
if (degree[node] == 1)
cout << "Yes\n" ;
else
cout << "No\n" ;
}
}
int main()
{
int n = 6;
vector<pair< int , int > > edges = {
{ 0, 1 }, { 0, 2 }, { 1, 3 }, { 1, 4 }, { 4, 5 }
};
vector< int > q = { 0, 3, 4, 5 };
performQueries(edges, q, n);
return 0;
}
|
Java
import java.util.*;
class GFG
{
static class pair
{
int first, second;
public pair( int first, int second)
{
this .first = first;
this .second = second;
}
}
static void init( int degree[],
pair[] edges, int n)
{
for ( int i = 0 ; i < n; i++)
{
degree[i] = 0 ;
}
for ( int i = 0 ; i < edges.length; i++)
{
degree[edges[i].first]++;
degree[edges[i].second]++;
}
}
static void performQueries(pair [] edges,
int []q, int n)
{
int []degree = new int [n];
init(degree, edges, n);
for ( int i = 0 ; i < q.length; i++)
{
int node = q[i];
if (node == 0 )
{
System.out.println( "No" );
continue ;
}
if (degree[node] == 1 )
System.out.println( "Yes" );
else
System.out.println( "No" );
}
}
public static void main(String[] args)
{
int n = 6 ;
pair[] edges = { new pair( 0 , 1 ),
new pair( 0 , 2 ),
new pair( 1 , 3 ),
new pair( 1 , 4 ),
new pair( 4 , 5 )};
int []q = { 0 , 3 , 4 , 5 };
performQueries(edges, q, n);
}
}
|
Python3
def init(degree, edges, n) :
for i in range (n) :
degree[i] = 0 ;
for i in range ( len (edges)) :
degree[edges[i][ 0 ]] + = 1 ;
degree[edges[i][ 1 ]] + = 1 ;
def performQueries(edges, q, n) :
degree = [ 0 ] * n;
init(degree, edges, n);
for i in range ( len (q)) :
node = q[i];
if (node = = 0 ) :
print ( "No" );
continue ;
if (degree[node] = = 1 ) :
print ( "Yes" );
else :
print ( "No" );
if __name__ = = "__main__" :
n = 6 ;
edges = [[ 0 , 1 ], [ 0 , 2 ],
[ 1 , 3 ], [ 1 , 4 ],
[ 4 , 5 ]];
q = [ 0 , 3 , 4 , 5 ];
performQueries(edges, q, n);
|
C#
using System;
class GFG
{
public class pair
{
public int first, second;
public pair( int first, int second)
{
this .first = first;
this .second = second;
}
}
static void init( int []degree,
pair[] edges, int n)
{
for ( int i = 0; i < n; i++)
{
degree[i] = 0;
}
for ( int i = 0; i < edges.Length; i++)
{
degree[edges[i].first]++;
degree[edges[i].second]++;
}
}
static void performQueries(pair [] edges,
int []q, int n)
{
int []degree = new int [n];
init(degree, edges, n);
for ( int i = 0; i < q.Length; i++)
{
int node = q[i];
if (node == 0)
{
Console.WriteLine( "No" );
continue ;
}
if (degree[node] == 1)
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
}
}
public static void Main(String[] args)
{
int n = 6;
pair[] edges = { new pair(0, 1),
new pair(0, 2),
new pair(1, 3),
new pair(1, 4),
new pair(4, 5)};
int []q = { 0, 3, 4, 5 };
performQueries(edges, q, n);
}
}
|
Javascript
<script>
function init(degree, edges, n)
{
for ( var i = 0; i < n; i++) {
degree[i] = 0;
}
for ( var i = 0; i < edges.length; i++) {
degree[edges[i][0]]++;
degree[edges[i][1]]++;
}
}
function performQueries( edges, q, n)
{
var degree = Array(n);
init(degree, edges, n);
for ( var i = 0; i < q.length; i++) {
var node = q[i];
if (node == 0) {
document.write( "No<br>" );
continue ;
}
if (degree[node] == 1)
document.write( "Yes<br>" );
else
document.write( "No<br>" );
}
}
var n = 6;
var edges = [
[ 0, 1 ], [ 0, 2 ], [ 1, 3 ], [ 1, 4 ], [ 4, 5 ]
];
var q = [ 0, 3, 4, 5 ];
performQueries(edges, q, n);
</script>
|
Time complexity: O(n)
Auxiliary Space: O(n).
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
13 Aug, 2021
Like Article
Save Article