Given a number N, the task is to check whether the number is divisible by 43 or not.
Examples:
Input: N = 2795
Output: yes
Explanation:
43 * 65 = 2795
Input: N = 11094
Output: yes
Explanation:
43 * 258 = 11094
Approach: The divisibility test of 43 is:
- Extract the last digit.
- Add 13 * last digit from the remaining number obtained after removing the last digit.
- Repeat the above steps until a two-digit number, or zero, is obtained.
- If the two-digit number is divisible by 43, or it is 0, then the original number is also divisible by 43.
For example:
If N = 11739
Step 1:
N = 11739
Last digit = 9
Remaining number = 1173
Adding 13 times last digit
Resultant number = 1173 + 13*9 = 1290
Step 2:
N = 1290
Since 129 is divisible by 43 as 43 * 3 = 129
Therefore N = 11739 is also divisible by 43
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
#include<stdlib.h>
using namespace std;
bool isDivisible( int n)
{
int d;
while (n / 100)
{
d = n % 10;
n /= 10;
n = abs (n+(d * 13));
}
return (n % 43 == 0) ;
}
int main() {
int N = 2795;
if (isDivisible(N))
cout<< "Yes" <<endl ;
else
cout<< "No" <<endl ;
return 0;
}
|
Java
class GFG
{
static boolean isDivisible( int n)
{
int d;
while ((n / 100 ) > 0 )
{
d = n % 10 ;
n /= 10 ;
n = Math.abs(n+(d * 13 ));
}
return (n % 43 == 0 ) ;
}
public static void main(String[] args) {
int N = 2795 ;
if (isDivisible(N))
System.out.print( "Yes" );
else
System.out.print( "No" );
}
}
|
Python 3
def isDivisible(n) :
while n / / 100 :
d = n % 10
n / / = 10
n = abs (n + (d * 13 ))
return (n % 43 = = 0 )
if __name__ = = "__main__" :
N = 2795
if (isDivisible(N)):
print ( "Yes" )
else :
print ( "No" )
|
C#
using System;
class GFG
{
static bool isDivisible( int n)
{
int d;
while (n / 100 > 0)
{
d = n % 10;
n /= 10;
n = Math.Abs(n + (d * 13));
}
return (n % 43 == 0) ;
}
public static void Main()
{
int N = 2795;
if (isDivisible(N))
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
}
}
|
Javascript
<script>
function isDivisible(n)
{
let d;
while (parseInt(n/100) > 0)
{
d = n % 10;
n = parseInt(n / 10)
n = Math.abs(n+(d * 13));
}
return (n % 43 == 0) ;
}
let N = 2795;
if (isDivisible(N))
document.write( "Yes" );
else
document.write( "No" );
</script>
|
Time Complexity: O(log10N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!