# Check if the number is divisible 43 or not

• Last Updated : 24 Nov, 2021

Given a number N, the task is to check whether the number is divisible by 43 or not.
Examples:

Input: N = 2795
Output: yes
Explanation:
43 * 65 = 2795
Input: N = 11094
Output: yes
Explanation:
43 * 258 = 11094

Approach: The divisibility test of 43 is:

1. Extract the last digit.
2. Add 13 * last digit from the remaining number obtained after removing the last digit.
3. Repeat the above steps until a two-digit number, or zero, is obtained.
4. If the two-digit number is divisible by 43, or it is 0, then the original number is also divisible by 43.

For example:

```If N = 11739

Step 1:
N = 11739
Last digit = 9
Remaining number = 1173
Resultant number = 1173 + 13*9 = 1290

Step 2:
N = 1290
Since 129 is divisible by 43 as 43 * 3 = 129

Therefore N = 11739 is also divisible by 43```

Below is the implementation of the above approach:

## C++

 `// C++ program to check whether a number``// is divisible by 43 or not` `#include``#include` `using` `namespace` `std;``// Function to check if the number is  divisible by 43 or not``bool` `isDivisible(``int` `n) ``{``    ``int` `d;``    ``// While there are at least two digits``    ``while` `(n / 100)``    ``{`` ` `        ``// Extracting the last``        ``d = n % 10;`` ` `        ``// Truncating the number``        ``n /= 10;`` ` `        ``// adding thirteen times the last``        ``// digit to the remaining number``        ``n = ``abs``(n+(d * 13));``    ``}``    ``// Finally return if the two-digit``    ``// number is divisible by 43 or not``    ``return` `(n % 43 == 0) ;``}` `// Driver Code``int` `main() {``    ``int` `N = 2795;`` ` `    ``if` `(isDivisible(N))``        ``cout<<``"Yes"``<

## Java

 `// Java program to check whether a number``// is divisible by 43 or not``class` `GFG``{` `// Function to check if the number is  divisible by 43 or not``static` `boolean` `isDivisible(``int` `n) ``{``    ``int` `d;``    ``// While there are at least two digits``    ``while` `((n / ``100``) > ``0``)``    ``{``  ` `        ``// Extracting the last``        ``d = n % ``10``;``  ` `        ``// Truncating the number``        ``n /= ``10``;``  ` `        ``// adding thirteen times the last``        ``// digit to the remaining number``        ``n = Math.abs(n+(d * ``13``));``    ``}``    ``// Finally return if the two-digit``    ``// number is divisible by 43 or not``    ``return` `(n % ``43` `== ``0``) ;``}`` ` `// Driver Code``public` `static` `void` `main(String[] args) {``    ``int` `N = ``2795``;``  ` `    ``if` `(isDivisible(N))``        ``System.out.print(``"Yes"``);``    ``else``        ``System.out.print(``"No"``);``    ` ` ``}    ``}   `` ` `// This code is contributed by PrinciRaj1992`

## Python 3

 `# Python program to check whether a number``# is divisible by 43 or not` `# Function to check if the number is``# divisible by 43 or not``def` `isDivisible(n) :` `    ``# While there are at least two digits``    ``while` `n ``/``/` `100` `:` `        ``# Extracting the last``        ``d ``=` `n ``%` `10` `        ``# Truncating the number``        ``n ``/``/``=` `10` `        ``# Adding thirteen  times the last``        ``# digit to the remaining number``        ``n ``=` `abs``(n``+``(d ``*` `13``))` `    ``# Finally return if the two-digit``    ``# number is divisible by 43 or not``    ``return` `(n ``%` `43` `=``=` `0``)` `# Driver Code``if` `__name__ ``=``=` `"__main__"` `:``    ` `    ``N ``=` `2795` `    ``if` `(isDivisible(N)):``        ``print``(``"Yes"``)``    ``else` `:``        ``print``(``"No"``)`

## C#

 `// C# program to check whether a number``// is divisible by 43 or not``using` `System;``        ` `class` `GFG``{``    ` `// Function to check if the number is divisible by 43 or not``static` `bool` `isDivisible(``int` `n)``{``    ``int` `d;``    ` `    ``// While there are at least two digits``    ``while` `(n / 100 > 0)``    ``{` `        ``// Extracting the last``        ``d = n % 10;` `        ``// Truncating the number``        ``n /= 10;` `        ``// adding thirteen times the last``        ``// digit to the remaining number``        ``n = Math.Abs(n + (d * 13));``    ``}``    ` `    ``// Finally return if the two-digit``    ``// number is divisible by 43 or not``    ``return` `(n % 43 == 0) ;``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int` `N = 2795;` `    ``if` `(isDivisible(N))``        ``Console.WriteLine(``"Yes"``);``    ``else``        ``Console.WriteLine(``"No"``);    ``}``}` `// This code is contributed by AbhiThakur`

## Javascript

 ``

Output:

`Yes`

Time Complexity: O(log10N)

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up