Given two strings S and T of same length. The task is to determine whether or not we can build a string A(initially empty) equal to string T by performing the below operations.
- Delete the first character of S and add it at the front of A.
- Delete the first chatacter of S and add it at the back of A.
Examples:
Input: S = “abab” T = “baab”
Output: YES
Explanation:
Add ‘a’ at front of A, then A = “a” and S = “bab”
Add ‘b’ at front of A, then A = “ba” and S = “ab”
Add ‘a’ at back of A, then A = “baa” and S = “b”
Add ‘b’ at back of A, then A = “baab” and S = “”
So we can make string A equal to string TInput: S = “geeks” T = “Teeks”
Output: NO
Approach: The idea is to use Dynamic Programming to solve this problem.
There are two possible moves for every character( front move or back move ). So, for each character, we will check if it is possible to add the character in the front or back of the new string. If it’s possible, we will move to the next character. If it’s not possible, then the operation will stop at that point and No will be printed.
- Firstly we will make a 2D boolean array dp[][] having rows and columns equal to the length of string S, where dp[i][j] = 1 indicates that all characters of string S from index i to n-1 can be placed in the new string A with j front moves such that it becomes equal to string T.
- We can traverse string S from the back and for each character update dp[][] in two ways, if we take the (i-1)-th character as a front move or (i-1)-th character as a back move.
- Finally, we will check if any value at the 1st row is equal to one or not.
Below is the implementation of the above approach
C++
// C++ implementation of above // approach #include <bits/stdc++.h> using namespace std; // Function that prints whether // is it possible to make a // string equal to T by // performing given operations void twoStringsEquality(string s, string t) { int n = s.length(); vector<vector< int > > dp( n, vector< int >( n + 1, 0)); // Base case, if we put the // last character at front // of A if (s[n - 1] == t[0]) dp[n - 1][1] = 1; // Base case, if we put the // last character at back // of A if (s[n - 1] == t[n - 1]) dp[n - 1][0] = 1; for ( int i = n - 1; i > 0; i--) { for ( int j = 0; j <= n - i; j++) { // Condition if current // sequence is matchable if (dp[i][j]) { // Condition for front // move to (i - 1)th // character if (s[i - 1] == t[j]) dp[i - 1][j + 1] = 1; // Condition for back // move to (i - 1)th // character if (s[i - 1] == t[i + j - 1]) dp[i - 1][j] = 1; } } } bool ans = false ; for ( int i = 0; i <= n; i++) { // Condition if it is // possible to make // string A equal to // string T if (dp[0][i] == 1) { ans = true ; break ; } } // Print final // answer if (ans == true ) cout << "Yes" << "\n" ; else cout << "No" << "\n" ; } // Driver Code int main() { string S = "abab" ; string T = "baab" ; twoStringsEquality(S, T); return 0; } |
Java
// Java implementation of above // approach import java.util.*; class GFG{ // Function that prints whether // is it possible to make a // String equal to T by // performing given operations static void twoStringsEquality(String s, String t) { int n = s.length(); int [][]dp = new int [n][n + 1 ]; // Base case, if we put the // last character at front // of A if (s.charAt(n - 1 ) == t.charAt( 0 )) dp[n - 1 ][ 1 ] = 1 ; // Base case, if we put the // last character at back // of A if (s.charAt(n - 1 ) == t.charAt(n - 1 )) dp[n - 1 ][ 0 ] = 1 ; for ( int i = n - 1 ; i > 0 ; i--) { for ( int j = 0 ; j <= n - i; j++) { // Condition if current // sequence is matchable if (dp[i][j] > 0 ) { // Condition for front // move to (i - 1)th // character if (s.charAt(i - 1 ) == t.charAt(j)) dp[i - 1 ][j + 1 ] = 1 ; // Condition for back // move to (i - 1)th // character if (s.charAt(i - 1 ) == t.charAt(i + j - 1 )) dp[i - 1 ][j] = 1 ; } } } boolean ans = false ; for ( int i = 0 ; i <= n; i++) { // Condition if it is possible // to make String A equal to // String T if (dp[ 0 ][i] == 1 ) { ans = true ; break ; } } // Print final answer if (ans == true ) System.out.print( "Yes" + "\n" ); else System.out.print( "No" + "\n" ); } // Driver Code public static void main(String[] args) { String S = "abab" ; String T = "baab" ; twoStringsEquality(S, T); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of above # approach # Function that prints whether # is it possible to make a # equal to T by # performing given operations def twoStringsEquality(s, t): n = len (s) dp = [[ 0 for i in range (n + 1 )] for i in range (n)] # Base case, if we put the # last character at front # of A if (s[n - 1 ] = = t[ 0 ]): dp[n - 1 ][ 1 ] = 1 # Base case, if we put the # last character at back # of A if (s[n - 1 ] = = t[n - 1 ]): dp[n - 1 ][ 0 ] = 1 for i in range (n - 1 , - 1 , - 1 ): for j in range (n - i + 1 ): # Condition if current # sequence is matchable if (dp[i][j]): # Condition for front # move to (i - 1)th # character if (s[i - 1 ] = = t[j]): dp[i - 1 ][j + 1 ] = 1 # Condition for back # move to (i - 1)th # character if (s[i - 1 ] = = t[i + j - 1 ]): dp[i - 1 ][j] = 1 ans = False for i in range (n + 1 ): # Condition if it is # possible to make # A equal to T if (dp[ 0 ][i] = = 1 ): ans = True break # Print final answer if (ans = = True ): print ( "Yes" ) else : print ( "No" ) # Driver Code if __name__ = = '__main__' : S = "abab" T = "baab" twoStringsEquality(S, T) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of above // approach using System; class GFG{ // Function that prints whether // is it possible to make a // String equal to T by // performing given operations static void twoStringsEquality(String s, String t) { int n = s.Length; int [,]dp = new int [n, n + 1]; // Base case, if we put the // last character at front // of A if (s[n - 1] == t[0]) dp[n - 1, 1] = 1; // Base case, if we put the // last character at back // of A if (s[n - 1] == t[n - 1]) dp[n - 1, 0] = 1; for ( int i = n - 1; i > 0; i--) { for ( int j = 0; j <= n - i; j++) { // Condition if current // sequence is matchable if (dp[i, j] > 0) { // Condition for front // move to (i - 1)th // character if (s[i - 1] == t[j]) dp[i - 1, j + 1] = 1; // Condition for back // move to (i - 1)th // character if (s[i - 1] == t[i + j - 1]) dp[i - 1, j] = 1; } } } bool ans = false ; for ( int i = 0; i <= n; i++) { // Condition if it is possible // to make String A equal to // String T if (dp[0, i] == 1) { ans = true ; break ; } } // Print readonly answer if (ans == true ) Console.Write( "Yes" + "\n" ); else Console.Write( "No" + "\n" ); } // Driver Code public static void Main(String[] args) { String S = "abab" ; String T = "baab" ; twoStringsEquality(S, T); } } // This code is contributed by 29AjayKumar |
Yes
Time Complexity: O(N2)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.