Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

C Program Coin Change

  • Last Updated : 14 May, 2021

Given a value N, if we want to make change for N cents, and we have infinite supply of each of S = { S1, S2, .. , Sm} valued coins, how many ways can we make the change? The order of coins doesn\’t matter.
For example, for N = 4 and S = {1,2,3}, there are four solutions: {1,1,1,1},{1,1,2},{2,2},{1,3}. So output should be 4. For N = 10 and S = {2, 5, 3, 6}, there are five solutions: {2,2,2,2,2}, {2,2,3,3}, {2,2,6}, {2,3,5} and {5,5}. So the output should be 5. 
 

We provide nothing but the best curated videos and practice problems for our students. Check out the C Foundation Course and master the C language from basic to advanced level. Wait no more, start learning today!

C




// C program for coin change problem.
#include<stdio.h>
 
int count( int S[], int m, int n )
{
    int i, j, x, y;
 
    // We need n+1 rows as the table is constructed
    // in bottom up manner using the base case 0
    // value case (n = 0)
    int table[n+1][m];
    
    // Fill the entries for 0 value case (n = 0)
    for (i=0; i<m; i++)
        table[0][i] = 1;
 
    // Fill rest of the table entries in bottom
    // up manner 
    for (i = 1; i < n+1; i++)
    {
        for (j = 0; j < m; j++)
        {
            // Count of solutions including S[j]
            x = (i-S[j] >= 0)? table[i - S[j]][j]: 0;
 
            // Count of solutions excluding S[j]
            y = (j >= 1)? table[i][j-1]: 0;
 
            // total count
            table[i][j] = x + y;
        }
    }
    return table[n][m-1];
}
 
// Driver program to test above function
int main()
{
    int arr[] = {1, 2, 3};
    int m = sizeof(arr)/sizeof(arr[0]);
    int n = 4;
    printf(" %d ", count(arr, m, n));
    return 0;
}

Output:

4

Time Complexity: O(mn) 
Following is a simplified version of method 2. The auxiliary space required here is O(n) only. 

C

 

C




int count( int S[], int m, int n )
{
    // table[i] will be storing the number of solutions for
    // value i. We need n+1 rows as the table is constructed
    // in bottom up manner using the base case (n = 0)
    int table[n+1];
 
    // Initialize all table values as 0
    memset(table, 0, sizeof(table));
 
    // Base case (If given value is 0)
    table[0] = 1;
 
    // Pick all coins one by one and update the table[] values
    // after the index greater than or equal to the value of the
    // picked coin
    for(int i=0; i<m; i++)
        for(int j=S[i]; j<=n; j++)
            table[j] += table[j-S[i]];
 
    return table[n];
}

Please refer complete article on Dynamic Programming | Set 7 (Coin Change) for more details!




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!