Consider a binary array consisting of N elements (initially all elements are 0). After that, you are given M commands where each command is of form a b, which means you have to toggle all the elements of the array in range a to b (both inclusive). After the execution of all M commands, you have to find the resultant array.
Examples:
Input : N = 5, M = 3
C1 = 1 3, C2 = 4 5, C3 = 1 4
Output : Resultant array = {0, 0, 0, 0, 1}
Explanation :
Initial array : {0, 0, 0, 0, 0}
After first toggle : {1, 1, 1, 0, 0}
After second toggle : {1, 1, 1, 1, 1}
After third toggle : {0, 0, 0, 0, 1}
Input : N = 5, M = 5
C1 = 1 5, C2 = 1 5, C3 = 1 5,
C4 = 1 5, C5 = 1 5
Output : Resultant array = {1, 1, 1, 1, 1}
Naive Approach: For the given N we should create a bool array of n+1 elements and for each of M commands we have to iterate from a to b and toggle all elements in the range of a to b with help of XOR.
The complexity of this approach is O(n^2).
for (int i = 1; i > a >> b;
for (int j = a; j <= b; j++)
arr[j] ^= 1;
Efficient Approach: The idea is based on the sample problem discussed in the Prefix Sum Array article. For the given n, we create a bool array of n+2 elements and for each of M commands, we have to just toggle elements a and b+1 with help of XOR. After all commands we will process the array as arr[i] ^= arr[i-1];
The complexity of this approach is O(n).
Implementation:
C++
#include<bits/stdc++.h>
using namespace std;
void command( bool arr[], int a, int b)
{
arr[a] ^= 1;
arr[b+1] ^= 1;
}
void process( bool arr[], int n)
{
for ( int k=1; k<=n; k++)
arr[k] ^= arr[k-1];
}
void result( bool arr[], int n)
{
for ( int k=1; k<=n; k++)
cout << arr[k] << " " ;
}
int main()
{
int n = 5, m = 3;
bool arr[n+2] = {0};
command(arr, 1, 5);
command(arr, 2, 5);
command(arr, 3, 5);
process(arr, n);
result(arr, n);
return 0;
}
|
Java
class GFG
{
static void command( boolean arr[],
int a, int b)
{
arr[a] ^= true ;
arr[b + 1 ] ^= true ;
}
static void process( boolean arr[], int n)
{
for ( int k = 1 ; k <= n; k++)
{
arr[k] ^= arr[k - 1 ];
}
}
static void result( boolean arr[], int n)
{
for ( int k = 1 ; k <= n; k++)
{
if (arr[k] == true )
System.out.print( "1" + " " );
else
System.out.print( "0" + " " );
}
}
public static void main(String args[])
{
int n = 5 , m = 3 ;
boolean arr[] = new boolean [n + 2 ];
command(arr, 1 , 5 );
command(arr, 2 , 5 );
command(arr, 3 , 5 );
process(arr, n);
result(arr, n);
}
}
|
Python3
def command(brr, a, b):
arr[a] ^ = 1
arr[b + 1 ] ^ = 1
def process(arr, n):
for k in range ( 1 , n + 1 , 1 ):
arr[k] ^ = arr[k - 1 ]
def result(arr, n):
for k in range ( 1 , n + 1 , 1 ):
print (arr[k], end = " " )
if __name__ = = '__main__' :
n = 5
m = 3
arr = [ 0 for i in range (n + 2 )]
command(arr, 1 , 5 )
command(arr, 2 , 5 )
command(arr, 3 , 5 )
process(arr, n)
result(arr, n)
|
C#
using System;
class GFG
{
static void command( bool [] arr,
int a, int b)
{
arr[a] ^= true ;
arr[b + 1] ^= true ;
}
static void process( bool [] arr, int n)
{
for ( int k = 1; k <= n; k++)
{
arr[k] ^= arr[k - 1];
}
}
static void result( bool [] arr, int n)
{
for ( int k = 1; k <= n; k++)
{
if (arr[k] == true )
Console.Write( "1" + " " );
else
Console.Write( "0" + " " );
}
}
public static void Main()
{
int n = 5, m = 3;
bool [] arr = new bool [n + 2];
command(arr, 1, 5);
command(arr, 2, 5);
command(arr, 3, 5);
process(arr, n);
result(arr, n);
}
}
|
PHP
<?php
function command( $arr , $a , $b )
{
$arr [ $a ] = $arr [ $a ] ^ 1;
$arr [ $b + 1] ^= 1;
}
function process( $arr , $n )
{
for ( $k = 1; $k <= $n ; $k ++)
{
$arr [ $k ] = $arr [ $k ] ^ $arr [ $k - 1];
}
}
function result( $arr , $n )
{
for ( $k = 1; $k <= $n ; $k ++)
echo $arr [ $k ] . " " ;
}
$n = 5; $m = 3;
$arr = new SplFixedArray(7);
$arr [6] = array (0);
command( $arr , 1, 5);
command( $arr , 2, 5);
command( $arr , 3, 5);
process( $arr , $n );
result( $arr , $n );
?>
|
Javascript
<script>
function command(arr, a, b)
{
arr[a] ^= 1;
arr[b+1] ^= 1;
}
function process( arr, n)
{
for ( var k=1; k<=n; k++)
arr[k] ^= arr[k-1];
}
function result( arr, n)
{
for ( var k=1; k<=n; k++)
document.write( arr[k] + " " );
}
var n = 5, m = 3;
var arr = Array(n+2).fill(0);
command(arr, 1, 5);
command(arr, 2, 5);
command(arr, 3, 5);
process(arr, n);
result(arr, n);
</script>
|
Time Complexity: O(n)
Auxiliary Space: O(1)
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
19 Sep, 2023
Like Article
Save Article