Bessel’s Interpolation

Interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable, while the process of computing the value of the function outside the given range is called extrapolation.

Central differences : The central difference operator d is defined by the relations :

Similarly, high order central differences are defined as :

Note – The central differences on the same horizontal line have the same suffix

Bessel’s Interpolation formula –

It is very useful when u = 1/2. It gives a better estimate when 1/4 < u < 3/4
Here f(0) is the origin point usually taken to be mid point, since bessel’s is used to interpolate near the centre.
h is called the interval of difference and u = ( x – f(0) ) / h, Here f(0) is term at the origin chosen.

Examples –

Input : Value at 27.4 ?

Output :

Value at 27.4 is 3.64968

Implementation of Bessel’s Interpolation –

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP Program to interpolate using Bessel's interpolation
#include <bits/stdc++.h>
using namespace std;
  
// caculating u mentioned in the formula
float ucal(float u, int n)
{
    if (n == 0)
        return 1;
  
    float temp = u;
    for (int i = 1; i <= n / 2; i++)
        temp = temp * (u - i);
  
    for (int i = 1; i < n / 2; i++)
        temp = temp * (u + i);
  
    return temp;
}
  
// calculating factorial of given number n
int fact(int n)
{
    int f = 1;
    for (int i = 2; i <= n; i++)
        f *= i;
  
    return f;
}
  
int main()
{
    // Number of values given
    int n = 6;
    float x[] = { 25, 26, 27, 28, 29, 30 };
  
    // y[][] is used for difference table
    // with y[][0] used for input
    float y[n][n];
    y[0][0] = 4.000;
    y[1][0] = 3.846;
    y[2][0] = 3.704;
    y[3][0] = 3.571;
    y[4][0] = 3.448;
    y[5][0] = 3.333;
  
    // Calculating the central difference table
    for (int i = 1; i < n; i++)
        for (int j = 0; j < n - i; j++)
            y[j][i] = y[j + 1][i - 1] - y[j][i - 1];
  
    // Displaying the central difference table
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n - i; j++)
            cout << setw(4) << y[i][j] << "\t";
        cout << endl;
    }
  
    // value to interpolate at
    float value = 27.4;
  
    // Initializing u and sum
    float sum = (y[2][0] + y[3][0]) / 2;
  
    // k is origin thats is f(0)
    int k;
    if (n % 2) // origin for odd
        k = n / 2;
    else
        k = n / 2 - 1; // origin for even
  
    float u = (value - x[k]) / (x[1] - x[0]);
  
    // Solving using bessel's formula
    for (int i = 1; i < n; i++) {
        if (i % 2)
            sum = sum + ((u - 0.5) * 
                  ucal(u, i - 1) * y[k][i]) / fact(i);
        else
            sum = sum + (ucal(u, i) * 
                  (y[k][i] + y[--k][i]) / (fact(i) * 2));
    }
  
    cout << "Value at " << value << " is " << sum << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to interpolate using Bessel's interpolation 
import java.text.*;
class GFG{
// caculating u mentioned in the formula 
static double ucal(double u, int n) 
    if (n == 0
        return 1
  
    double temp = u; 
    for (int i = 1; i <= n / 2; i++) 
        temp = temp * (u - i); 
  
    for (int i = 1; i < n / 2; i++) 
        temp = temp * (u + i); 
  
    return temp; 
  
// calculating factorial of given number n 
static int fact(int n) 
    int f = 1
    for (int i = 2; i <= n; i++) 
        f *= i; 
  
    return f; 
  
public static void main(String[] args) 
    // Number of values given 
    int n = 6
    double x[] = { 25, 26, 27, 28, 29, 30 }; 
  
    // y[][] is used for difference table 
    // with y[][0] used for input 
    double[][] y=new double[n][n]; 
    y[0][0] = 4.000
    y[1][0] = 3.846
    y[2][0] = 3.704
    y[3][0] = 3.571
    y[4][0] = 3.448
    y[5][0] = 3.333
  
    // Calculating the central difference table 
    for (int i = 1; i < n; i++) 
        for (int j = 0; j < n - i; j++) 
            y[j][i] = y[j + 1][i - 1] - y[j][i - 1]; 
  
    // Displaying the central difference table
    DecimalFormat df = new DecimalFormat("#.########");
    for (int i = 0; i < n; i++) { 
        for (int j = 0; j < n - i; j++) 
            System.out.print(y[i][j]+"\t"); 
        System.out.println(""); 
    
  
    // value to interpolate at 
    double value = 27.4
  
    // Initializing u and sum 
    double sum = (y[2][0] + y[3][0]) / 2
  
    // k is origin thats is f(0) 
    int k; 
    if ((n % 2)>0) // origin for odd 
        k = n / 2
    else
        k = n / 2 - 1; // origin for even 
  
    double u = (value - x[k]) / (x[1] - x[0]); 
  
    // Solving using bessel's formula 
    for (int i = 1; i < n; i++) { 
        if ((i % 2)>0
            sum = sum + ((u - 0.5) * 
                ucal(u, i - 1) * y[k][i]) / fact(i); 
        else
            sum = sum + (ucal(u, i) * 
                (y[k][i] + y[--k][i]) / (fact(i) * 2)); 
    
  
    System.out.printf("Value at "+value+" is %.5f",sum); 
  
}
// This code is contributed by mits

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 Program to interpolate
# using Bessel's interpolation
  
# calculating u mentioned in the 
# formula
def ucal(u, n):
  
    if (n == 0):
        return 1;
  
    temp = u;
    for i in range(1, int(n / 2 + 1)):
        temp = temp * (u - i);
  
    for i in range(1, int(n / 2)):
        temp = temp * (u + i);
  
    return temp;
  
# calculating factorial of 
# given number n
def fact(n):
  
    f = 1;
    for i in range(2, n + 1):
        f *= i;
  
    return f;
  
# Number of values given
n = 6;
x = [25, 26, 27, 28, 29, 30];
  
# y[][] is used for difference 
# table with y[][0] used for input
y = [[0 for i in range(n)] 
        for j in range(n)];
y[0][0] = 4.000;
y[1][0] = 3.846;
y[2][0] = 3.704;
y[3][0] = 3.571;
y[4][0] = 3.448;
y[5][0] = 3.333;
  
# Calculating the central
# difference table
for i in range(1, n):
    for j in range(n - i):
        y[j][i] = y[j + 1][i - 1] - y[j][i - 1];
  
# Displaying the central
# difference table
for i in range(n): 
    for j in range(n - i):
        print(y[i][j], "\t", end = " ");
    print("");
  
# value to interpolate at
value = 27.4;
  
# Initializing u and sum
sum = (y[2][0] + y[3][0]) / 2;
  
# k is origin thats is f(0)
k = 0;
if ((n % 2) > 0): # origin for odd
    k = int(n / 2);
else:
    k = int(n / 2 - 1); # origin for even
  
u = (value - x[k]) / (x[1] - x[0]);
  
# Solving using bessel's formula
for i in range(1, n): 
  
    if (i % 2):
        sum = sum + ((u - 0.5) *
                 ucal(u, i - 1) *
              y[k][i]) / fact(i);
    else:
        sum = sum + (ucal(u, i) * (y[k][i] + 
                     y[k - 1][i]) / (fact(i) * 2));
        k -= 1;
  
print("Value at", value, "is", round(sum, 5));
  
# This code is contributed by mits

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to interpolate using Bessel's interpolation 
  
class GFG{
// caculating u mentioned in the formula 
static double ucal(double u, int n) 
    if (n == 0) 
        return 1; 
  
    double temp = u; 
    for (int i = 1; i <= n / 2; i++) 
        temp = temp * (u - i); 
  
    for (int i = 1; i < n / 2; i++) 
        temp = temp * (u + i); 
  
    return temp; 
  
// calculating factorial of given number n 
static int fact(int n) 
    int f = 1; 
    for (int i = 2; i <= n; i++) 
        f *= i; 
  
    return f; 
  
public static void Main() 
    // Number of values given 
    int n = 6; 
    double []x = { 25, 26, 27, 28, 29, 30 }; 
  
    // y[,] is used for difference table 
    // with y[,0] used for input 
    double[,] y=new double[n,n]; 
    y[0,0] = 4.000; 
    y[1,0] = 3.846; 
    y[2,0] = 3.704; 
    y[3,0] = 3.571; 
    y[4,0] = 3.448; 
    y[5,0] = 3.333; 
  
    // Calculating the central difference table 
    for (int i = 1; i < n; i++) 
        for (int j = 0; j < n - i; j++) 
            y[j,i] = y[j + 1,i - 1] - y[j,i - 1]; 
  
    // Displaying the central difference table
    for (int i = 0; i < n; i++) { 
        for (int j = 0; j < n - i; j++) 
            System.Console.Write(y[i,j]+"\t"); 
        System.Console.WriteLine(""); 
    
  
    // value to interpolate at 
    double value = 27.4; 
  
    // Initializing u and sum 
    double sum = (y[2,0] + y[3,0]) / 2; 
  
    // k is origin thats is f(0) 
    int k; 
    if ((n % 2)>0) // origin for odd 
        k = n / 2; 
    else
        k = n / 2 - 1; // origin for even 
  
    double u = (value - x[k]) / (x[1] - x[0]); 
  
    // Solving using bessel's formula 
    for (int i = 1; i < n; i++) { 
        if ((i % 2)>0) 
            sum = sum + ((u - 0.5) * 
                ucal(u, i - 1) * y[k,i]) / fact(i); 
        else
            sum = sum + (ucal(u, i) * 
                (y[k,i] + y[--k,i]) / (fact(i) * 2)); 
    
  
    System.Console.WriteLine("Value at "+value+" is "+System.Math.Round(sum,5)); 
  
}
// This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to interpolate
// using Bessel's interpolation
  
// caculating u mentioned 
// in the formula
function ucal($u, $n)
{
    if ($n == 0)
        return 1;
  
    $temp = $u;
    for ($i = 1; 
         $i <= (int)($n / 2); $i++)
        $temp = $temp
               ($u - $i);
  
    for ($i = 1; 
         $i < (int)($n / 2); $i++)
        $temp = $temp * ($u + $i);
  
    return $temp;
}
  
// calculating factorial 
// of given number n
function fact($n)
{
    $f = 1;
    for ($i = 2; $i <= $n; $i++)
        $f *= $i;
  
    return $f;
}
  
// Number of values given
$n = 6;
$x = array(25, 26, 27, 
           28, 29, 30);
  
// y[][] is used for difference 
// table with y[][0] used for input
$y;
for($i = 0; $i < $n; $i++)
for($j = 0; $j < $n; $j++)
$y[$i][$j] = 0.0;
$y[0][0] = 4.000;
$y[1][0] = 3.846;
$y[2][0] = 3.704;
$y[3][0] = 3.571;
$y[4][0] = 3.448;
$y[5][0] = 3.333;
  
// Calculating the central
// difference table
for ($i = 1; $i < $n; $i++)
    for ($j = 0; $j < $n - $i; $j++)
        $y[$j][$i] = $y[$j + 1][$i - 1] -
                     $y[$j][$i - 1];
  
// Displaying the central
// difference table
for ($i = 0; $i < $n; $i++) 
{
    for ($j = 0; $j < $n - $i; $j++)
        echo str_pad($y[$i][$j], 4) . "\t";
    echo "\n";
}
  
// value to interpolate at
$value = 27.4;
  
// Initializing u and sum
$sum = ($y[2][0] + 
        $y[3][0]) / 2;
  
// k is origin thats is f(0)
$k;
if ($n % 2) // origin for odd
    $k = $n / 2;
else
    $k = $n / 2 - 1; // origin for even
  
$u = ($value - $x[$k]) / 
     ($x[1] - $x[0]);
  
// Solving using 
// bessel's formula
for ($i = 1; $i < $n; $i++) 
{
    if ($i % 2)
        $sum = $sum + (($u - 0.5) * 
                   ucal($u, $i - 1) * 
                     $y[$k][$i]) / fact($i);
    else
        $sum = $sum + (ucal($u, $i) * 
                      ($y[$k][$i] + 
                       $y[--$k][$i]) / 
                       (fact($i) * 2));
}
  
echo "Value at " . $value .
     " is " . $sum . "\n";
  
// This code is contributed by mits
?>

chevron_right



Output:

    4    -0.154    0.0120001    -0.00300002    0.00399971    -0.00699902    
3.846    -0.142    0.00900006    0.000999689    -0.00299931    
3.704    -0.133    0.00999975    -0.00199962    
3.571    -0.123    0.00800014    
3.448    -0.115    
3.333    
Value at 27.4 is 3.64968

This article is contributed by Shubham Rana. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : Mithun Kumar



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.