Open In App
Related Articles

B-Tree Insert without aggressive splitting

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

B-Tree Insert without aggressive splitting
This algorithm for insertion takes an entry, finds the leaf node where it belongs, and inserts it there. We recursively insert the entry by calling the insert algorithm on the appropriate child node. This procedure results in going down to the leaf node where the entry belongs, placing the entry there, and returning all the way back to the root node. 
Sometimes a node is full, i.e. it contains 2*t – 1 entries where t is the minimum degree. In such cases the node must be split. In such case one key becomes a parent and a new node is created. We first insert the new key, making total keys as 2*t. We keep the first t entries in original node, transfer last (t-1) entries to new node and set the (t+1)th node as parent of these nodes. If the node being split is a non child node then we also have to split the child pointers. A node having 2*t keys has 2*t + 1 child pointers. The first (t+1) pointers are kept in original node and remaining t pointers goes to new node.
 

This algorithm splits a node only when it is necessary. We first recursively call insert for appropriate child of node (in case of non-leaf node) or insert it into node (for leaf node). If the node is full, we split it, storing new child entry in newEntry and new parent key in val. These values are then inserted into the parent, which recursively splits itself in case it is also full.
Example:
We insert numbers 1 – 5 in tree. The tree becomes: 
 


Then we insert 6, the node is full. Hence it is split into two nodes making 4 as parent. 
 


We insert numbers 7 – 16, the tree becomes:
 


We insert 22 – 30, the tree becomes:
 


Note that now the root is full. If we insert 17 now, the root is not split as the leaf node in which 17 was inserted didn’t split. If we were following aggressive splitting, the root would have been split before we went to leaf node.
 


But if we insert 31, the leaf node splits, which recursively adds new entry to root. But as root is full, it needs to be split. The tree now becomes.
 


 


Below is the implementation of the above approach:

CPP

// C++ implementation of the approach
#include <iostream>
#include <vector>
using namespace std;
 
class BTreeNode {
 
    // Vector of keys
    vector<int> keys;
 
    // Minimum degree
    int t;
 
    // Vector of child pointers
    vector<BTreeNode*> C;
 
    // Is true when node is leaf, else false
    bool leaf;
 
public:
    // Constructor
    BTreeNode(int t, bool leaf);
 
    // Traversing the node and print its content
    // with tab number of tabs before
    void traverse(int tab);
 
    // Insert key into given node. If child is split, we
    // have to insert *val entry into keys vector and
    // newEntry pointer into C vector of this node
    void insert(int key, int* val,
                BTreeNode*& newEntry);
 
    // Split this node and store the new parent value in
    // *val and new node pointer in newEntry
    void split(int* val, BTreeNode*& newEntry);
 
    // Returns true if node is full
    bool isFull();
 
    // Makes new root, setting current root as its child
    BTreeNode* makeNewRoot(int val, BTreeNode* newEntry);
};
 
bool BTreeNode::isFull()
{
    // returns true if node is full
    return (this->keys.size() == 2 * t - 1);
}
 
BTreeNode::BTreeNode(int t, bool leaf)
{
    // Constructor to set value of t and leaf
    this->t = t;
    this->leaf = leaf;
}
 
// Function to print the nodes of B-Tree
void BTreeNode::traverse(int tab)
{
    int i;
    string s;
 
    // Print 'tab' number of tabs
    for (int j = 0; j < tab; j++) {
        s += '\t';
    }
    for (i = 0; i < keys.size(); i++) {
 
        // If this is not leaf, then before printing key[i]
        // traverse the subtree rooted with child C[i]
        if (leaf == false)
            C[i]->traverse(tab + 1);
        cout << s << keys[i] << endl;
    }
 
    // Print the subtree rooted with last child
    if (leaf == false) {
        C[i]->traverse(tab + 1);
    }
}
 
// Function to split the current node and store the new
// parent value is *val and new child pointer in &newEntry
// called only for splitting non-leaf node
void BTreeNode::split(int* val, BTreeNode*& newEntry)
{
 
    // Create new non leaf node
    newEntry = new BTreeNode(t, false);
 
    //(t+1)th becomes parent
    *val = this->keys[t];
 
    // Last (t-1) entries will go to new node
    for (int i = t + 1; i < 2 * t; i++) {
        newEntry->keys.push_back(this->keys[i]);
    }
 
    // This node stores first t entries
    this->keys.resize(t);
 
    // Last t entries will go to new node
    for (int i = t + 1; i <= 2 * t; i++) {
        newEntry->C.push_back(this->C[i]);
    }
 
    // This node stores first (t+1) entries
    this->C.resize(t + 1);
}
 
// Function to insert a new key in given node.
// If child of this node is split, we have to insert *val
// into keys vector and newEntry pointer into C vector
void BTreeNode::insert(int new_key, int* val,
                       BTreeNode*& newEntry)
{
 
    // Non leaf node
    if (leaf == false) {
        int i = 0;
 
        // Find first key greater than new_key
        while (i < keys.size() && new_key > keys[i])
            i++;
 
        // We have to insert new_key into left child of
        // Node with index i
        C[i]->insert(new_key, val, newEntry);
 
        // No split was done
        if (newEntry == NULL)
            return;
        if (keys.size() < 2 * t - 1) {
 
            // This node can accommodate a new key
            // and child pointer entry
            // Insert *val into key vector
            keys.insert(keys.begin() + i, *val);
 
            // Insert newEntry into C vector
            C.insert(C.begin() + i + 1, newEntry);
 
            // As this node was not split, set newEntry
            // to NULL
            newEntry = NULL;
        }
        else {
 
            // Insert *val and newentry
            keys.insert(keys.begin() + i, *val);
            C.insert(C.begin() + i + 1, newEntry);
 
            // Current node has 2*t keys, so split it
            split(val, newEntry);
        }
    }
    else {
 
        // Insert new_key in this node
        vector<int>::iterator it;
 
        // Find correct position
        it = lower_bound(keys.begin(), keys.end(),
                         new_key);
 
        // Insert in correct position
        keys.insert(it, new_key);
 
        // If node is full
        if (keys.size() == 2 * t) {
 
            // Create new node
            newEntry = new BTreeNode(t, true);
 
            // Set (t+1)th key as parent
            *val = this->keys[t];
 
            // Insert last (t-1) keys into new node
            for (int i = t + 1; i < 2 * t; i++) {
                newEntry->keys.push_back(this->keys[i]);
            }
 
            // This node stores first t keys
            this->keys.resize(t);
        }
    }
}
 
// Function to create a new root
// setting current node as its child
BTreeNode* BTreeNode::makeNewRoot(int val, BTreeNode* newEntry)
{
    // Create new root
    BTreeNode* root = new BTreeNode(t, false);
 
    // Stores keys value
    root->keys.push_back(val);
 
    // Push child pointers
    root->C.push_back(this);
    root->C.push_back(newEntry);
    return root;
}
 
class BTree {
 
    // Root of B-Tree
    BTreeNode* root;
 
    // Minimum degree
    int t;
 
public:
    // Constructor
    BTree(int t);
 
    // Insert key
    void insert(int key);
 
    // Display the tree
    void display();
};
 
// Function to create a new BTree with
// minimum degree t
BTree::BTree(int t)
{
    root = new BTreeNode(t, true);
}
 
// Function to insert a node in the B-Tree
void BTree::insert(int key)
{
    BTreeNode* newEntry = NULL;
    int val = 0;
 
    // Insert in B-Tree
    root->insert(key, &val, newEntry);
 
    // If newEntry is not Null then root needs to be
    // split. Create new root
    if (newEntry != NULL) {
        root = root->makeNewRoot(val, newEntry);
    }
}
 
// Prints BTree
void BTree::display()
{
    root->traverse(0);
}
 
// Driver code
int main()
{
 
    // Create B-Tree
    BTree* tree = new BTree(3);
    cout << "After inserting 1 and 2" << endl;
    tree->insert(1);
    tree->insert(2);
    tree->display();
 
    cout << "After inserting 5 and 6" << endl;
    tree->insert(5);
    tree->insert(6);
    tree->display();
 
    cout << "After inserting 3 and 4" << endl;
    tree->insert(3);
    tree->insert(4);
    tree->display();
 
    return 0;
}

                    

Java

import java.util.ArrayList;
 
class BTreeNode {
 
    // Vector of keys
    private ArrayList<Integer> keys;
 
    // Minimum degree
    private int t;
 
    // Vector of child pointers
    private ArrayList<BTreeNode> C;
 
    // Is true when node is leaf, else false
    private boolean leaf;
 
    // Constructor
    public BTreeNode(int t, boolean leaf) {
        this.t = t;
        this.leaf = leaf;
        this.keys = new ArrayList<>();
        this.C = new ArrayList<>();
    }
 
    // Traversing the node and print its content
    // with tab number of tabs before
    public void traverse(int tab) {
        StringBuilder s = new StringBuilder();
 
        // Print 'tab' number of tabs
        for (int j = 0; j < tab; j++) {
            s.append('\t');
        }
 
        for (int i = 0; i < keys.size(); i++) {
 
            // If this is not leaf, then before printing key[i]
            // traverse the subtree rooted with child C[i]
            if (!leaf) {
                C.get(i).traverse(tab + 1);
            }
            System.out.println(s.toString() + keys.get(i));
        }
 
        // Print the subtree rooted with the last child
        if (!leaf) {
            C.get(keys.size()).traverse(tab + 1);
        }
    }
 
    // Returns true if node is full
    public boolean isFull() {
        // returns true if node is full
        return keys.size() == 2 * t - 1;
    }
 
    // Makes new root, setting current root as its child
    public BTreeNode makeNewRoot(int val, BTreeNode newEntry) {
        // Create new root
        BTreeNode root = new BTreeNode(t, false);
 
        // Stores keys value
        root.keys.add(val);
 
        // Push child pointers
        root.C.add(this);
        root.C.add(newEntry);
        return root;
    }
 
    // Function to split the current node and store the new
    // parent value in *val and new child pointer in &newEntry
    // called only for splitting non-leaf node
    public void split(int[] val, BTreeNode newEntry) {
 
        // Create new non-leaf node
        BTreeNode newNode = new BTreeNode(t, false);
 
        // (t+1)th becomes parent
        val[0] = this.keys.get(t);
 
        // Last (t-1) entries will go to the new node
        for (int i = t + 1; i < 2 * t; i++) {
            newNode.keys.add(this.keys.get(i));
        }
 
        // This node stores the first t entries
        this.keys.subList(t, 2 * t - 1).clear();
 
        // Last t entries will go to the new node
        newNode.C.addAll(this.C.subList(t + 1, 2 * t));
 
        // This node stores the first (t+1) entries
        this.C.subList(t + 1, 2 * t + 1).clear();
        this.C.add(newNode);
    }
 
    // Function to insert a new key in the given node.
    // If the child of this node is split, we have to insert *val
    // into keys vector and newEntry pointer into C vector
    public void insert(int newKey, int[] val, BTreeNode[] newEntry) {
 
        // Non-leaf node
        if (!leaf) {
            int i = 0;
 
            // Find the first key greater than newKey
            while (i < keys.size() && newKey > keys.get(i))
                i++;
 
            // We have to insert newKey into the left child of
            // Node with index i
            C.get(i).insert(newKey, val, newEntry);
 
            // No split was done
            if (newEntry[0] == null)
                return;
 
            if (keys.size() < 2 * t - 1) {
                // This node can accommodate a new key
                // and child pointer entry
                // Insert *val into key vector
                keys.add(i, val[0]);
 
                // Insert newEntry into C vector
                C.add(i + 1, newEntry[0]);
 
                // As this node was not split, set newEntry
                // to null
                newEntry[0] = null;
            } else {
                // Insert *val and newentry
                keys.add(i, val[0]);
                C.add(i + 1, newEntry[0]);
 
                // Current node has 2*t keys, so split it
                split(val, newEntry[0]);
            }
        } else {
            // Insert newKey in this node
            int i = 0;
 
            // Find correct position
            while (i < keys.size() && newKey > keys.get(i))
                i++;
 
            // Insert in correct position
            keys.add(i, newKey);
 
            // If node is full
            if (keys.size() == 2 * t) {
 
                // Create a new node
                BTreeNode newLeaf = new BTreeNode(t, true);
 
                // Set (t+1)th key as parent
                val[0] = this.keys.get(t);
 
                // Insert last (t-1) keys into new node
                newLeaf.keys.addAll(keys.subList(t + 1, 2 * t));
 
                // This node stores the first t keys
                this.keys.subList(t, 2 * t - 1).clear();
 
                newEntry[0] = newLeaf;
            }
        }
    }
}
 
class BTree {
 
    // Root of B-Tree
    private BTreeNode root;
 
    // Minimum degree
    private int t;
 
    // Constructor
    public BTree(int t) {
        this.root = new BTreeNode(t, true);
        this.t = t;
    }
 
    // Function to insert a node in the B-Tree
    public void insert(int key) {
        BTreeNode[] newEntry = {null};
        int[] val = {0};
 
        // Insert in B-Tree
        root.insert(key, val, newEntry);
 
        // If newEntry is not null then root needs to be
        // split. Create new root
        if (newEntry[0] != null) {
            root = root.makeNewRoot(val[0], newEntry[0]);
        }
    }
 
    // Prints BTree
    public void display() {
        root.traverse(0);
    }
}
 
// Driver code
public class Main {
 
    public static void main(String[] args) {
 
        // Create B-Tree
        BTree tree = new BTree(3);
        System.out.println("After inserting 1 and 2");
        tree.insert(1);
        tree.insert(2);
        tree.display();
 
        System.out.println("After inserting 5 and 6");
        tree.insert(5);
        tree.insert(6);
        tree.display();
 
        System.out.println("After inserting 3 and 4");
        tree.insert(3);
        tree.insert(4);
        tree.display();
    }
}

                    

Python3

# Python3 implementation for the above approach
 
import bisect
 
class BTreeNode:
   
    # The constructor method to initialize BTreeNode
    def __init__(self, t, leaf):
        self.keys = []
        self.t = t
        self.C = []
        self.leaf = leaf
 
    # Check if the node is full or not
    def isFull(self):
        return len(self.keys) == (2 * self.t - 1)
 
    # Traverse the node
    def traverse(self, tab):
       
        s = "\t" * tab
         
        if not self.leaf:
            for i in range(len(self.keys)):
               
                # Recursive call to traverse the child node
                self.C[i].traverse(tab + 1)
                print(s + str(self.keys[i]))
                 
            # Traverse the rightmost child node
            self.C[i + 1].traverse(tab + 1)
             
        else:
            # Print the leaf node
            for i in range(len(self.keys)):
                print(s + str(self.keys[i]))
 
    # Split the node
    def split(self):
       
        newEntry = BTreeNode(self.t, self.leaf)
        val = self.keys[self.t - 1]
        newEntry.keys = self.keys[self.t:]
        self.keys = self.keys[:self.t - 1]
         
        if not self.leaf:
            newEntry.C = self.C[self.t:]
            self.C = self.C[:self.t]
             
        return val, newEntry
 
    # Insert new key
    def insert(self, new_key):
        newEntry = None
         
        if not self.leaf:
            # Use bisect to find the index of new_key
            i = bisect.bisect_left(self.keys, new_key)
             
            # Recursively call insert on the child node
            newEntry = self.C[i].insert(new_key)
             
            # Check if new entry needs to be split
            if newEntry is not None:
               
                if len(self.keys) < 2*self.t - 1:
                    self.keys.insert(i, newEntry[0])
                    self.C.insert(i+1, newEntry[1])
                    newEntry = None
                else:
                    self.keys.insert(i, newEntry[0])
                    self.C.insert(i+1, newEntry[1])
                    val, newEntry = self.split()
        else:
            # Use bisect to find the index of new_key
            i = bisect.bisect_left(self.keys, new_key)
             
            # Insert the new_key
            self.keys.insert(i, new_key)
             
            # Check if the leaf node is full
            if len(self.keys) == 2*self.t - 1:
                newEntry = self.split()
         
        return newEntry
 
    # Create new root node
    def makeNewRoot(self, val, newEntry):
        root = BTreeNode(self.t, False)
        root.keys.append(val)
        root.C.append(self)
        root.C.append(newEntry)
        return root
 
 
class BTree:
    # The constructor method to initialize BTree
    def __init__(self, t):
        self.root = BTreeNode(t, True)
        self.t = t
 
    # Insert new key
    def insert(self, key):
        newEntry = self.root.insert(key)
         
        # Check if new entry needs to be split
        if newEntry is not None:
            self.root = self.root.makeNewRoot(newEntry[0], newEntry[1])
             
    # Display the BTree
    def display(self):
        self.root.traverse(0)
 
# Driver code
tree = BTree(2)
print("After inserting 1 and 2")
tree.insert(1)
tree.insert(2)
tree.display()
 
print("After inserting 5 and 6")
tree.insert(5)
tree.insert(6)
tree.display()
 
print("After inserting 3 and 4")
tree.insert(3)
tree.insert(4)
tree.display()
 
# This code is contributed by amit_mangal_

                    

C#

using System;
using System.Collections.Generic;
 
public class BTreeNode
{
    public List<int> keys = new List<int>();
    public int t;
    public List<BTreeNode> C = new List<BTreeNode>();
    public bool leaf;
 
    public BTreeNode(int t, bool leaf)
    {
        this.t = t;
        this.leaf = leaf;
    }
 
    public bool isFull()
    {
        return keys.Count == (2 * t - 1);
    }
 
    public void traverse(int tab)
    {
        string s = new String('\t', tab);
 
        if (!leaf)
        {
            for (int i = 0; i < keys.Count; i++)
            {
                C[i].traverse(tab + 1);
                Console.WriteLine(s + keys[i]);
            }
            C[keys.Count].traverse(tab + 1);
        }
        else
        {
            foreach (int key in keys)
            {
                Console.WriteLine(s + key);
            }
        }
    }
 
    public Tuple<int, BTreeNode> split()
    {
        BTreeNode newEntry = new BTreeNode(t, leaf);
        int val = keys[t - 1];
        newEntry.keys.AddRange(keys.GetRange(t, keys.Count - t));
        keys.RemoveRange(t - 1, keys.Count - t + 1);
 
        if (!leaf)
        {
            newEntry.C.AddRange(C.GetRange(t, C.Count - t));
            C.RemoveRange(t, C.Count - t);
        }
 
        return Tuple.Create(val, newEntry);
    }
 
    public Tuple<int, BTreeNode> insert(int new_key)
    {
        Tuple<int, BTreeNode> newEntry = null;
 
        if (!leaf)
        {
            int i = keys.BinarySearch(new_key);
            if (i < 0) i = ~i;
            newEntry = C[i].insert(new_key);
 
            if (newEntry != null)
            {
                if (keys.Count < 2 * t - 1)
                {
                    keys.Insert(i, newEntry.Item1);
                    C.Insert(i + 1, newEntry.Item2);
                    newEntry = null;
                }
                else
                {
                    keys.Insert(i, newEntry.Item1);
                    C.Insert(i + 1, newEntry.Item2);
                    newEntry = split();
                }
            }
        }
        else
        {
            int i = keys.BinarySearch(new_key);
            if (i < 0) i = ~i;
            keys.Insert(i, new_key);
 
            if (keys.Count == 2 * t - 1)
            {
                newEntry = split();
            }
        }
 
        return newEntry;
    }
 
    public BTreeNode makeNewRoot(int val, BTreeNode newEntry)
    {
        BTreeNode root = new BTreeNode(t, false);
        root.keys.Add(val);
        root.C.Add(this);
        root.C.Add(newEntry);
        return root;
    }
}
 
public class BTree
{
    public BTreeNode root;
    public int t;
 
    public BTree(int t)
    {
        this.root = new BTreeNode(t, true);
        this.t = t;
    }
 
    public void insert(int key)
    {
        Tuple<int, BTreeNode> newEntry = root.insert(key);
 
        if (newEntry != null)
        {
            root = root.makeNewRoot(newEntry.Item1, newEntry.Item2);
        }
    }
 
    public void display()
    {
        root.traverse(0);
    }
}
 
class Program
{
    static void Main(string[] args)
    {
        BTree tree = new BTree(2);
        Console.WriteLine("After inserting 1 and 2");
        tree.insert(1);
        tree.insert(2);
        tree.display();
 
        Console.WriteLine("After inserting 5 and 6");
        tree.insert(5);
        tree.insert(6);
        tree.display();
 
        Console.WriteLine("After inserting 3 and 4");
        tree.insert(3);
        tree.insert(4);
        tree.display();
    }
}

                    

Javascript

class BTreeNode {
  constructor(t, leaf) {
    this.keys = [];
    this.t = t;
    this.C = [];
    this.leaf = leaf;
  }
 
  isFull() {
    return this.keys.length === 2 * this.t - 1;
  }
 
  traverse(tab) {
    const s = "\t".repeat(tab);
 
    if (!this.leaf) {
      for (let i = 0; i < this.keys.length; i++) {
        this.C[i].traverse(tab + 1);
        console.log(s + this.keys[i]);
      }
      this.C[this.keys.length].traverse(tab + 1);
    } else {
      for (let i = 0; i < this.keys.length; i++) {
        console.log(s + this.keys[i]);
      }
    }
  }
 
  split() {
    const newEntry = new BTreeNode(this.t, this.leaf);
    const val = this.keys[this.t - 1];
    newEntry.keys = this.keys.slice(this.t);
    this.keys = this.keys.slice(0, this.t - 1);
 
    if (!this.leaf) {
      newEntry.C = this.C.slice(this.t);
      this.C = this.C.slice(0, this.t);
    }
 
    return [val, newEntry];
  }
 
  // Insert a new key into the B-tree
  insert(newKey) {
    let newEntry = null;
 
    if (!this.leaf) {
      // Use binary search to find the index for insertion
      const i = this.binarySearch(newKey);
      // Recursively call insert on the child node
      newEntry = this.C[i].insert(newKey);
 
      // Check if a new entry needs to be split
      if (newEntry !== null) {
        if (this.keys.length < 2 * this.t - 1) {
          // Insert the new entry into the current node
          this.keys.splice(i, 0, newEntry[0]);
          this.C.splice(i + 1, 0, newEntry[1]);
          newEntry = null;
        } else {
          // Split the current node and insert the new entry
          this.keys.splice(i, 0, newEntry[0]);
          this.C.splice(i + 1, 0, newEntry[1]);
          [newKey, newEntry] = this.split();
        }
      }
    } else {
      // Use binary search to find the index for insertion
      const i = this.binarySearch(newKey);
      // Insert the new key into the leaf node
      this.keys.splice(i, 0, newKey);
 
      // Check if the leaf node is full and needs to be split
      if (this.keys.length === 2 * this.t - 1) {
        newEntry = this.split();
      }
    }
 
    return newEntry;
  }
 
  // Perform binary search to find the index for insertion
  binarySearch(newKey) {
    let left = 0;
    let right = this.keys.length - 1;
 
    while (left <= right) {
      const mid = Math.floor((left + right) / 2);
 
      if (this.keys[mid] === newKey) {
        return mid;
      } else if (this.keys[mid] < newKey) {
        left = mid + 1;
      } else {
        right = mid - 1;
      }
    }
 
    return left;
  }
 
  // Create a new root node
  makeNewRoot(val, newEntry) {
    const root = new BTreeNode(this.t, false);
    root.keys.push(val);
    root.C.push(this);
    root.C.push(newEntry);
    return root;
  }
}
 
class BTree {
  constructor(t) {
    this.root = new BTreeNode(t, true);
    this.t = t;
  }
 
  // Insert a new key into the B-tree
  insert(key) {
    const newEntry = this.root.insert(key);
 
    // Check if a new entry needs to be split and create a new root if necessary
    if (newEntry !== null) {
      this.root = this.root.makeNewRoot(newEntry[0], newEntry[1]);
    }
  }
 
  // Display the B-tree
  display() {
    this.root.traverse(0);
  }
}
 
// Driver code
const tree = new BTree(2);
console.log("After inserting 1 and 2");
tree.insert(1);
tree.insert(2);
tree.display();
 
console.log("After inserting 5 and 6");
tree.insert(5);
tree.insert(6);
tree.display();
 
console.log("After inserting 3 and 4");
tree.insert(3);
tree.insert(4);
tree.display();

                    

Output
After inserting 1 and 2
1
2
After inserting 5 and 6
1
2
5
6
After inserting 3 and 4
    1
    2
    3
4
    5
    6


Last Updated : 11 Jan, 2024
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads