Open In App
Related Articles

All possible values of floor(N/K) for all values of K

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a function f(K) = floor(N/K) (N>0 and K>0), the task is to find all possible values of f(K) for a given N where K takes all values in the range [1, Inf].
Examples: 
 

Input: N = 5 
Output: 0 1 2 5 
Explanation: 
5 divide 1 = 5 
5 divide 2 = 2 
5 divide 3 = 1 
5 divide 4 = 1 
5 divide 5 = 1 
5 divide 6 = 0 
5 divide 7 = 0 
So all possible distinct values of f(k) are {0, 1, 2, 5}.
Input: N = 11 
Output: 0 1 2 3 5 11 
Explanation: 
11 divide 1 = 11 
11 divide 2 = 5 
11 divide 3 = 3 
11 divide 4 = 2 
11 divide 5 = 2 
11 divide 6 = 1 
11 divide 7 = 1 
… 
… 
11 divided 11 = 1 
11 divides 12 = 0 
So all possible distinct values of f(k) are {0, 1, 2, 3, 5, 11}. 
 

 

Naive Approach: 
The simplest approach to iterate over [1, N+1] and store in a set, all values of (N/i) ( 1 ? i ? N + 1) to avoid duplication. 
Below is the implementation of the above approach:
 

C++




// C++ Program for the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print all
// possible values of
// floor(N/K)
void allQuotients(int N)
{
    set<int> s;
 
    // loop from 1 to N+1
    for (int k = 1; k <= N + 1; k++) {
        s.insert(N / k);
    }
 
    for (auto it : s)
        cout << it << " ";
}
 
int main()
{
    int N = 5;
    allQuotients(N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to print all
// possible values of
// Math.floor(N/K)
static void allQuotients(int N)
{
    HashSet<Integer> s = new HashSet<Integer>();
 
    // loop from 1 to N+1
    for(int k = 1; k <= N + 1; k++)
    {
        s.add(N / k);
    }
     
    for(int it : s)
        System.out.print(it + " ");
}
 
// Driver code
public static void main(String[] args)
{
    int N = 5;
     
    allQuotients(N);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program for the above approach
 
# Function to print all possible
# values of floor(N/K)
def allQuotients(N):
 
    s = set()
 
    # Iterate from 1 to N+1
    for k in range(1, N + 2):
        s.add(N // k)
 
    for it in s:
        print(it, end = ' ')
 
# Driver code
if __name__ == '__main__':
 
    N = 5
     
    allQuotients(N)
 
# This code is contributed by himanshu77


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
     
// Function to print all possible
// values of Math.floor(N/K)
static void allQuotients(int N)
{
    SortedSet<int> s = new SortedSet<int>();
     
    // Loop from 1 to N+1
    for(int k = 1; k <= N + 1; k++)
    {
        s.Add(N / k);
    }
     
    foreach(int it in s)
    {
        Console.Write(it + " ");
    }
}
 
// Driver code
static void Main()
{
    int N = 5;
     
    allQuotients(N);
}
}
 
// This code is contributed by divyeshrabadiya07


Javascript




<script>
 
// Javascript Program for the
// above approach
 
// Function to print all
// possible values of
// floor(N/K)
function allQuotients(N)
{
    var s = new Set();
 
    // loop from 1 to N+1
    for (var k = 1; k <= N + 1; k++) {
        s.add(parseInt(N / k));
    }
     
    var ls = Array.from(s).reverse();
    ls.forEach(v => document.write(v+ " "))
}
 
var N = 5;
allQuotients(N);
 
 
</script>


Output: 

0 1 2 5

 

Time Complexity: O(nlogn)

Auxiliary Space: O(n)
Efficient Approach: 
An optimized solution is to iterate over [1, ?N] and insert values K and (N/K) into the set.
 

C++




// C++ Program for the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print all
// possible values of
// floor(N/K)
void allQuotients(int N)
{
    set<int> s;
    s.insert(0);
 
    for (int k = 1; k <= sqrt(N); k++) {
        s.insert(k);
        s.insert(N / k);
    }
 
    for (auto it : s)
        cout << it << " ";
}
 
int main()
{
    int N = 5;
    allQuotients(N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// Function to print all
// possible values of
// Math.floor(N/K)
static void allQuotients(int N)
{
    HashSet<Integer> s = new HashSet<Integer>();
    s.add(0);
     
    // loop from 1 to N+1
    for(int k = 1; k <= Math.sqrt(N); k++)
    {
        s.add(k);
        s.add(N / k);
    }
     
    for(int it : s)
        System.out.print(it + " ");
}
 
// Driver code
public static void main(String[] args)
{
    int N = 5;
     
    allQuotients(N);
}
}
 
// This code is contributed by rock_cool


Python3




# Python3 program for the above approach
from math import *
 
# Function to print all possible
# values of floor(N/K)
def allQuotients(N):
 
    s = set()
    s.add(0)
 
    for k in range(1, int(sqrt(N)) + 1):
        s.add(k)
        s.add(N // k)
 
    for it in s:
        print(it, end = ' ')
 
# Driver code
if __name__ == '__main__':
 
    N = 5
     
    allQuotients(N)
 
# This code is contributed by himanshu77


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
     
// Function to print all possible
// values of Math.floor(N/K)
static void allQuotients(int N)
{
    SortedSet<int> s = new SortedSet<int>();
    s.Add(0);
     
    // loop from 1 to N+1
    for(int k = 1; k <= Math.Sqrt(N); k++)
    {
        s.Add(k);
        s.Add(N / k);
    }
     
    foreach(int it in s)
    {
        Console.Write(it + " ");
    }
}
 
// Driver code   
static void Main()
{
    int N = 5;
     
    allQuotients(N);
}
}
 
// This code is contributed by divyeshrabadiya07


Javascript




<script>
 
 
// Javascript Program for the
// above approach
 
// Function to print all
// possible values of
// floor(N/K)
function allQuotients(N)
{
    var s = new Set();
    s.add(0);
 
    for (var k = 1; k <= parseInt(Math.sqrt(N)); k++) {
        s.add(k);
        s.add(parseInt(N / k));
    }
    var tmp = [...s];
    tmp.sort((a,b)=>a-b)
     
    tmp.forEach(it => {
        document.write( it + " ");
    });
}
 
var N = 5;
allQuotients(N);
 
// This code is contributed by noob2000.
</script>


Output: 

0 1 2 5

 

Time Complexity: O(sqrt(n)*logn)

Auxiliary Space: O(n)
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 24 Jul, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials