# All possible numbers of N digits and base B without leading zeros

Given number of digits ‘N’ and base ‘B’, the task is to count all the ‘N’ digit numbers without leading zeros that are in base ‘B’.

Examples:

```Input: N = 2, B = 2
Output: 2
All possible numbers without
leading zeros are 10 and 11.

Input: N = 5, B = 8
Output: 28672
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

• If the base is ‘B’ then every digit of the number can take any value within the range [0, B-1].
• So, B ‘N’ digit numbers are possible with base ‘B’ (including the numbers with leading zeros).
• And, if we fix the first digit as ‘0’ then the rest of the ‘N-1’ digits can form a total of B numbers.
• So, total number of ‘N’ digit numbers with base ‘B’ possible without leading zeros are B – B .

Below is the implementation of above Approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// function to count ` `// all permutations ` `void` `countPermutations(``int` `N, ``int` `B) ` `{ ` `    ``// count of ` `    ``// all permutations ` `    ``int` `x = ``pow``(B, N); ` ` `  `    ``// count of permutations ` `    ``// with leading zeros ` `    ``int` `y = ``pow``(B, N - 1); ` ` `  `    ``// Return the permutations ` `    ``// without leading zeros ` `    ``cout << x - y << ``"\n"``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` ` `  `    ``int` `N = 6; ` `    ``int` `B = 4; ` ` `  `    ``countPermutations(N, B); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` ` `  `class` `GFG ` `{ ` `// function to count ` `// all permutations ` `static` `void` `countPermutations(``int` `N, ``int` `B) ` `{ ` `    ``// count of ` `    ``// all permutations ` `    ``int` `x = (``int``)Math.pow(B, N); ` ` `  `    ``// count of permutations ` `    ``// with leading zeros ` `    ``int` `y = (``int``)Math.pow(B, N - ``1``); ` ` `  `    ``// Return the permutations ` `    ``// without leading zeros ` `    ``System.out.println(x - y); ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `N = ``6``; ` `    ``int` `B = ``4``; ` ` `  `    ``countPermutations(N, B); ` `} ` `} ` ` `  `// This code is contributed by mits `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# function to count all permutations  ` `def` `countPermutations(N, B):  ` ` `  `    ``# count of all permutations  ` `    ``x ``=` `B ``*``*` `N  ` ` `  `    ``# count of permutations  ` `    ``# with leading zeros  ` `    ``y ``=` `B ``*``*` `(N ``-` `1``)  ` ` `  `    ``# Return the permutations  ` `    ``# without leading zeros  ` `    ``print``(x ``-` `y)  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"``: ` ` `  `    ``N, B ``=` `6``, ``4` `    ``countPermutations(N, B)  ` ` `  `# This code is contributed by Rituraj Jain `

## C#

 `// C# implementation of the approach ` ` `  `using` `System; ` `class` `GFG ` `{ ` `// function to count ` `// all permutations ` `static` `void` `countPermutations(``int` `N, ``int` `B) ` `{ ` `    ``// count of ` `    ``// all permutations ` `    ``int` `x = (``int``)Math.Pow(B, N); ` ` `  `    ``// count of permutations ` `    ``// with leading zeros ` `    ``int` `y = (``int``)Math.Pow(B, N - 1); ` ` `  `    ``// Return the permutations ` `    ``// without leading zeros ` `    ``Console.WriteLine(x - y); ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main() ` `{ ` `    ``int` `N = 6; ` `    ``int` `B = 4; ` ` `  `    ``countPermutations(N, B); ` `} ` `} ` ` `  `// This code is contributed ` `// by Akanksha Rai(Abby_akku) `

## PHP

 ` `

Output:

```3072
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.