All possible numbers of N digits and base B without leading zeros
Given a number of digits ‘N’ and base ‘B’, the task is to count all the ‘N’ digit numbers without leading zeros that are in base ‘B’
Examples:
Input: N = 2, B = 2 Output: 2 All possible numbers without leading zeros are 10 and 11. Input: N = 5, B = 8 Output: 28672
Approach:
- If the base is ‘B’ then every digit of the number can take any value within the range [0, B-1].
- So, B
‘N’ digit numbers are possible with base ‘B’ (including the numbers with leading zeros).
- And, if we fix the first digit as ‘0’ then the rest of the ‘N-1’ digits can form a total of B
numbers.
- So, the total number of ‘N’ digit numbers with base ‘B’ possible without leading zeros are B
– B
.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // function to count // all permutations void countPermutations( int N, int B) { // count of // all permutations int x = pow (B, N); // count of permutations // with leading zeros int y = pow (B, N - 1); // Return the permutations // without leading zeros cout << x - y << "\n" ; } // Driver code int main() { int N = 6; int B = 4; countPermutations(N, B); return 0; } |
Java
// Java implementation of the approach class GFG { // function to count // all permutations static void countPermutations( int N, int B) { // count of // all permutations int x = ( int )Math.pow(B, N); // count of permutations // with leading zeros int y = ( int )Math.pow(B, N - 1 ); // Return the permutations // without leading zeros System.out.println(x - y); } // Driver code public static void main(String[] args) { int N = 6 ; int B = 4 ; countPermutations(N, B); } } // This code is contributed by mits |
Python3
# Python3 implementation of the approach # function to count all permutations def countPermutations(N, B): # count of all permutations x = B * * N # count of permutations # with leading zeros y = B * * (N - 1 ) # Return the permutations # without leading zeros print (x - y) # Driver code if __name__ = = "__main__" : N, B = 6 , 4 countPermutations(N, B) # This code is contributed by Rituraj Jain |
C#
// C# implementation of the approach using System; class GFG { // function to count // all permutations static void countPermutations( int N, int B) { // count of // all permutations int x = ( int )Math.Pow(B, N); // count of permutations // with leading zeros int y = ( int )Math.Pow(B, N - 1); // Return the permutations // without leading zeros Console.WriteLine(x - y); } // Driver code public static void Main() { int N = 6; int B = 4; countPermutations(N, B); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
PHP
<?php // PHP implementation of the approach // function to count all permutations function countPermutations( $N , $B ) { // count of all permutations $x = pow( $B , $N ); // count of permutations // with leading zeros $y = pow( $B , $N - 1); // Return the permutations // without leading zeros echo ( $x - $y ), "\n" ; } // Driver code $N = 6; $B = 4; countPermutations( $N , $B ); // This code is contributed // by Sach_Code` ?> |
Javascript
<script> // Javascript implementation of the approach // function to count // all permutations function countPermutations(N, B) { // count of // all permutations var x = Math.pow(B, N); // count of permutations // with leading zeros var y = Math.pow(B, N - 1); // Return the permutations // without leading zeros document.write( x - y ); } // Driver code var N = 6; var B = 4; countPermutations(N, B); </script> |
Output:
3072
Time Complexity: O(logn), since pow function takes logn time to find the power of a number to base n.
Auxiliary Space: O(1), since no extra space has been taken.
Please Login to comment...