# Narayana number

In combinatorics, the Narayana numbers N(n, k), n = 1, 2, 3 …, 1 <= k <= n, form a triangular array of natural numbers, called Narayana triangle. It is given by :

Narayana numbers N(n, k) can be used to find the number of expressions containing n-pairs of parentheses, which are correctly matched and which contain k distinct nesting.

For instance, N(4, 2) = 6 as with four pairs of parentheses six sequences can be created which each contain two times the sub-pattern ‘()’ :

`()((()))  (())(())  (()(()))  ((()()))  ((())())  ((()))()`

Examples:

```Input : n = 6, k = 2
Output : 15

Input : n = 8, k = 5
Output : 490
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Below is the C++ implementation of finding N(n, k) :

```// CPP program to find Narayana number N(n, k)
#include<bits/stdc++.h>
using namespace std;

// Return product of coefficient terms in formula
int productofCoefficiet(int n, int k)
{
int C[n + 1][k + 1];

// Calculate value of Binomial Coefficient
// in bottom up manner
for (int i = 0; i <= n; i++)
{
for (int j = 0; j <= min(i, k); j++)
{
// Base Cases
if (j == 0 || j == i)
C[i][j] = 1;

// Calculate value using previously
// stored values
else
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
}

return C[n][k] * C[n][k - 1];
}

// Returns Narayana number N(n, k)
int findNN(int n, int k)
{
return (productofCoefficiet(n, k)) / n;
}

// Driven Program
int main()
{
int n = 8, k = 5;
cout << findNN(n, k) << endl;
return 0;
}
```

Output:

```490
```

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

# GATE CS Corner    Company Wise Coding Practice

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.
0 Average Difficulty : 0/5.0