Skip to content
Related Articles

Related Articles

Improve Article

Sum of all numbers formed having 4 atmost X times, 5 atmost Y times and 6 atmost Z times

  • Difficulty Level : Expert
  • Last Updated : 08 Jun, 2021

Given three integers X, Y and Z, the task is to find the sum of all the numbers formed having 4 atmost X times, 5 atmost Y times and 6 atmost Z times, under mod 10^9+7.
Examples: 
 

Input: X = 1, Y = 1, Z = 1 
Output: 3675
Explanation:
4 + 5 + 6 + 45 + 54 + 56 
+ 65 + 46 + 64 + 456 + 465 
+ 546 + 564 + 645 + 654 = 3675

Input: X = 4, Y = 5, Z = 6
Output: 129422134

 

Approach: 
 

  • As this problem has the property of sub-problems overlapping and optimal sub-structure, hence dynamic programming can be used to solve it.
  • The numbers having exact i 4s, j 5s and k 6s for all i < x, j < y, j < z are required to get the required sum.
  • Therefore the dp array exactnum[i][j][k] will store the exact count of numbers having exact i 4s, j 5s and k 6s.
  • If exactnum[i – 1][j][k], exactnum[i][j – 1][k] and exactnum[i][j][k – 1] are already known, then it can be observed that the sum of these is the required answer, except in the case when exactnum[i – 1][j][k], exactnum[i][j – 1][k] or exactnum[i][j][k – 1] doesn’t exist. In that case, just skip it.
  • exactsum[i][j][k] stores the sum of exact number having i 4’s, j 5’s and k 6’s in the same way as 
     
exactsum[i][j][k] = 10 * (exactsum[i - 1][j][k] 
                        + exactsum[i][j - 1][k] 
                        + exactsum[i][j][k - 1]) 
                  + 4 * exactnum[i - 1][j][k] 
                  + 5 * exactnum[i][j - 1][k] 
                  + 6 * exactnum[i][j][k - 1] 

Below is the implementation of the above approach: 
 

C++




// C++ program to find sum of all numbers
// formed having 4 atmost X times, 5 atmost
// Y times and 6 atmost Z times
#include <bits/stdc++.h>
using namespace std;
 
const int N = 101;
const int mod = 1e9 + 7;
 
// exactsum[i][j][k] stores the sum of
// all the numbers having exact
// i 4's, j 5's and k 6's
int exactsum[N][N][N];
 
// exactnum[i][j][k] stores numbers
// of numbers having exact
// i 4's, j 5's and k 6's
int exactnum[N][N][N];
 
// Utility function to calculate the
// sum for x 4's, y 5's and z 6's
int getSum(int x, int y, int z)
{
    int ans = 0;
    exactnum[0][0][0] = 1;
    for (int i = 0; i <= x; ++i) {
        for (int j = 0; j <= y; ++j) {
            for (int k = 0; k <= z; ++k) {
 
                // Computing exactsum[i][j][k]
                // as explained above
                if (i > 0) {
                    exactsum[i][j][k]
                        += (exactsum[i - 1][j][k] * 10
                            + 4 * exactnum[i - 1][j][k])
                           % mod;
                    exactnum[i][j][k]
                        += exactnum[i - 1][j][k] % mod;
                }
                if (j > 0) {
                    exactsum[i][j][k]
                        += (exactsum[i][j - 1][k] * 10
                            + 5 * exactnum[i][j - 1][k])
                           % mod;
                    exactnum[i][j][k]
                        += exactnum[i][j - 1][k] % mod;
                }
                if (k > 0) {
                    exactsum[i][j][k]
                        += (exactsum[i][j][k - 1] * 10
                            + 6 * exactnum[i][j][k - 1])
                           % mod;
                    exactnum[i][j][k]
                        += exactnum[i][j][k - 1] % mod;
                }
 
                ans += exactsum[i][j][k] % mod;
                ans %= mod;
            }
        }
    }
    return ans;
}
 
// Driver code
int main()
{
    int x = 1, y = 1, z = 1;
 
    cout << (getSum(x, y, z) % mod);
 
    return 0;
}

Java




// Java program to find sum of all numbers
// formed having 4 atmost X times, 5 atmost
// Y times and 6 atmost Z times
     
class GFG
{
     
    static int N = 101;
    static int mod = (int)1e9 + 7;
     
    // exactsum[i][j][k] stores the sum of
    // all the numbers having exact
    // i 4's, j 5's and k 6's
    static int exactsum[][][] = new int[N][N][N];
     
    // exactnum[i][j][k] stores numbers
    // of numbers having exact
    // i 4's, j 5's and k 6's
    static int exactnum[][][] = new int[N][N][N];
     
    // Utility function to calculate the
    // sum for x 4's, y 5's and z 6's
    static int getSum(int x, int y, int z)
    {
        int ans = 0;
        exactnum[0][0][0] = 1;
        for (int i = 0; i <= x; ++i)
        {
            for (int j = 0; j <= y; ++j)
            {
                for (int k = 0; k <= z; ++k)
                {
     
                    // Computing exactsum[i][j][k]
                    // as explained above
                    if (i > 0)
                    {
                        exactsum[i][j][k]
                        += (exactsum[i - 1][j][k] * 10
                        + 4 * exactnum[i - 1][j][k]) % mod;
                         
                        exactnum[i][j][k]
                        += exactnum[i - 1][j][k] % mod;
                    }
                    if (j > 0)
                    {
                        exactsum[i][j][k]
                        += (exactsum[i][j - 1][k] * 10
                        + 5 * exactnum[i][j - 1][k]) % mod;
                         
                        exactnum[i][j][k]
                        += exactnum[i][j - 1][k] % mod;
                    }
                    if (k > 0)
                    {
                        exactsum[i][j][k]
                        += (exactsum[i][j][k - 1] * 10
                        + 6 * exactnum[i][j][k - 1]) % mod;
                         
                        exactnum[i][j][k]
                        += exactnum[i][j][k - 1] % mod;
                    }
     
                    ans += exactsum[i][j][k] % mod;
                    ans %= mod;
                }
            }
        }
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int x = 1, y = 1, z = 1;
     
        System.out.println(getSum(x, y, z) % mod);
     
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 program to find sum of all numbers
# formed having 4 atmost X times, 5 atmost
# Y times and 6 atmost Z times
import numpy as np
 
N = 101;
mod = int(1e9) + 7;
 
# exactsum[i][j][k] stores the sum of
# all the numbers having exact
# i 4's, j 5's and k 6's
exactsum = np.zeros((N, N, N));
 
# exactnum[i][j][k] stores numbers
# of numbers having exact
# i 4's, j 5's and k 6's
exactnum = np.zeros((N, N, N));
 
# Utility function to calculate the
# sum for x 4's, y 5's and z 6's
def getSum(x, y, z) :
    ans = 0;
    exactnum[0][0][0] = 1;
    for i in range(x + 1) :
        for j in range(y + 1) :
            for k in range(z + 1) :
 
                # Computing exactsum[i][j][k]
                # as explained above
                if (i > 0) :
                    exactsum[i][j][k] += (exactsum[i - 1][j][k] * 10 +
                                            4 * exactnum[i - 1][j][k]) % mod;
                                             
                    exactnum[i][j][k] += exactnum[i - 1][j][k] % mod;
                 
                if (j > 0) :
                    exactsum[i][j][k] += (exactsum[i][j - 1][k] * 10+
                                        5 * exactnum[i][j - 1][k]) % mod;
                                         
                    exactnum[i][j][k] += exactnum[i][j - 1][k] % mod;
                 
                if (k > 0) :
                    exactsum[i][j][k] += (exactsum[i][j][k - 1] * 10
                                            + 6 * exactnum[i][j][k - 1]) % mod;
                    exactnum[i][j][k] += exactnum[i][j][k - 1] % mod;
 
                ans += exactsum[i][j][k] % mod;
                ans %= mod;
                 
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    x = 1; y = 1; z = 1;
 
    print((getSum(x, y, z) % mod));
 
# This code is contributed by AnkitRai01

C#




// C# program to find sum of all numbers
// formed having 4 atmost X times, 5 atmost
// Y times and 6 atmost Z times
using System;
 
class GFG
{
     
    static int N = 101;
    static int mod = (int)1e9 + 7;
     
    // exactsum[i][j][k] stores the sum of
    // all the numbers having exact
    // i 4's, j 5's and k 6's
    static int [,,]exactsum = new int[N, N, N];
     
    // exactnum[i][j][k] stores numbers
    // of numbers having exact
    // i 4's, j 5's and k 6's
    static int [,,]exactnum= new int[N, N, N];
     
    // Utility function to calculate the
    // sum for x 4's, y 5's and z 6's
    static int getSum(int x, int y, int z)
    {
        int ans = 0;
        exactnum[0, 0, 0] = 1;
        for (int i = 0; i <= x; ++i)
        {
            for (int j = 0; j <= y; ++j)
            {
                for (int k = 0; k <= z; ++k)
                {
     
                    // Computing exactsum[i, j, k]
                    // as explained above
                    if (i > 0)
                    {
                        exactsum[i, j, k]
                        += (exactsum[i - 1, j, k] * 10
                        + 4 * exactnum[i - 1, j, k]) % mod;
                         
                        exactnum[i, j, k]
                        += exactnum[i - 1, j, k] % mod;
                    }
                    if (j > 0)
                    {
                        exactsum[i, j, k]
                        += (exactsum[i, j - 1, k] * 10
                        + 5 * exactnum[i, j - 1, k]) % mod;
                         
                        exactnum[i, j, k]
                        += exactnum[i, j - 1, k] % mod;
                    }
                    if (k > 0)
                    {
                        exactsum[i, j, k]
                        += (exactsum[i, j, k - 1] * 10
                        + 6 * exactnum[i, j, k - 1]) % mod;
                         
                        exactnum[i, j, k]
                        += exactnum[i, j, k - 1] % mod;
                    }
     
                    ans += exactsum[i, j, k] % mod;
                    ans %= mod;
                }
            }
        }
        return ans;
    }
     
    // Driver code
    public static void Main ()
    {
        int x = 1, y = 1, z = 1;
     
        Console.WriteLine(getSum(x, y, z) % mod);
     
    }
}
     
// This code is contributed by AnkitRai01

Javascript




<script>
    // Javascript program to find sum of all numbers
    // formed having 4 atmost X times, 5 atmost
    // Y times and 6 atmost Z times
     
    let N = 101;
    let mod = 1e9 + 7;
       
    // exactsum[i][j][k] stores the sum of
    // all the numbers having exact
    // i 4's, j 5's and k 6's
    let exactsum = new Array(N);
       
    // exactnum[i][j][k] stores numbers
    // of numbers having exact
    // i 4's, j 5's and k 6's
    let exactnum = new Array(N);
     
    for(let i = 0; i < N; i++)
    {
        exactsum[i] = new Array(N);
        exactnum[i] = new Array(N);
        for(let j = 0; j < N; j++)
        {
            exactsum[i][j] = new Array(N);
            exactnum[i][j] = new Array(N);
            for(let k = 0; k < N; k++)
            {
                exactsum[i][j][k] = 0;
                exactnum[i][j][k] = 0;
            }
        }
    }
       
    // Utility function to calculate the
    // sum for x 4's, y 5's and z 6's
    function getSum(x, y, z)
    {
        let ans = 0;
        exactnum[0][0][0] = 1;
        for (let i = 0; i <= x; ++i)
        {
            for (let j = 0; j <= y; ++j)
            {
                for (let k = 0; k <= z; ++k)
                {
       
                    // Computing exactsum[i][j][k]
                    // as explained above
                    if (i > 0)
                    {
                        exactsum[i][j][k]
                        += (exactsum[i - 1][j][k] * 10
                        + 4 * exactnum[i - 1][j][k]) % mod;
                           
                        exactnum[i][j][k]
                        += exactnum[i - 1][j][k] % mod;
                    }
                    if (j > 0)
                    {
                        exactsum[i][j][k]
                        += (exactsum[i][j - 1][k] * 10
                        + 5 * exactnum[i][j - 1][k]) % mod;
                           
                        exactnum[i][j][k]
                        += exactnum[i][j - 1][k] % mod;
                    }
                    if (k > 0)
                    {
                        exactsum[i][j][k]
                        += (exactsum[i][j][k - 1] * 10
                        + 6 * exactnum[i][j][k - 1]) % mod;
                           
                        exactnum[i][j][k]
                        += exactnum[i][j][k - 1] % mod;
                    }
       
                    ans += exactsum[i][j][k] % mod;
                    ans %= mod;
                }
            }
        }
        return ans;
    }
     
    let x = 1, y = 1, z = 1;
       
    document.write(getSum(x, y, z) % mod);
 
</script>
Output: 
3675

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :