Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Subtree of all nodes in a tree using DFS

  • Difficulty Level : Easy
  • Last Updated : 29 Oct, 2021

Given n nodes of a tree and their connections, print Subtree nodes of every node.
Subtree of a node is defined as a tree which is a child of a node. The name emphasizes that everything which is a descendant of a tree node is a tree too, and is a subset of the larger tree.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Examples : 
 



Input: N = 5
  0 1
  1 2
  0 3
  3 4
Output: 
Subtree of node 0 is 1 2 3 4 
Subtree of node 1 is 2 
Subtree of node 3 is 4

Input: N = 7
  0 1
  1 2
  2 3
  0 4
  4 5
  4 6
Output:
Subtree of node 0 is 1 2 3 4 5 6 
Subtree of node 1 is 2 3 
Subtree of node 4 is 5 6 

 

Approach: Do DFS traversal for every node and print all the nodes which are reachable from a particular node. 
Explanation of below code: 
 

  1. When function dfs(0, 0) is called, start[0] = 0, dfs_order.push_back(0), visited[0] = 1 to keep track of dfs order.
  2. Now, consider adjacency list (adj[100001]) as considering directional path elements connected to node 0 will be in adjacency list corresponding to node 0.
  3. Now, recursively call dfs function till all elements traversed of adj[0].
  4. Now, dfs(1, 2) is called, Now start[1] = 1, dfs_order.push_back(1), visited[1] = 1 after adj[1] elements is traversed.
  5. Now adj [1] is traversed which contain only node 2 when adj[2] is traversed it contains no element, it will break and end[1]=2.
  6. Similarly, all nodes traversed and store dfs_order in array to find subtree of nodes.

 

C++




// C++ code to print subtree of all nodes
#include<bits/stdc++.h>
using namespace std;
 
// arrays for keeping position
// at each dfs traversal for each node
int start[100001];
int end[100001];
 
// Storing dfs order
vector<int>dfs_order;
vector<int>adj[100001];
int visited[100001];
 
// Recursive function for dfs
// traversal dfsUtil()
void dfs(int a,int &b)
{
 
    // keep track of node visited
    visited[a]=1;
    b++;
    start[a]=b;
    dfs_order.push_back(a);
     
    for(vector<int>:: iterator it=adj[a].begin();
                           it!=adj[a].end();it++)
    {
        if(!visited[*it])
        {
            dfs(*it,b);
        }
    }
    endd[a]=b;
}
 
// Function to print the subtree nodes
void Print(int n)
{
    for(int i = 0; i < n; i++)
    {
        // if node is leaf node
        // start[i] is equals to endd[i]
        if(start[i]!=endd[i])
        {
            cout<<"subtree of node "<<i<<" is ";
            for(int j=start[i]+1;j<=endd[i];j++)
            {
                cout<<dfs_order[j-1]<<" ";
            }
            cout<<endl;
        }
    }
}
 
// Driver code
int main()
{
    // No of nodes n = 10
    int n =10, c = 0;
     
    adj[0].push_back(1);
    adj[0].push_back(2);
    adj[0].push_back(3);
    adj[1].push_back(4);
    adj[1].push_back(5);
    adj[4].push_back(7);
    adj[4].push_back(8);
    adj[2].push_back(6);
    adj[6].push_back(9);
     
    // Calling dfs for node 0
    // Considering root node at 0
    dfs(0, c);
 
    // Print child nodes
    Print(n);
 
    return 0;
 
}

Java




// Java code to print subtree of all nodes
import java.util.*;
public class Main
{
    // arrays for keeping position
    // at each dfs traversal for each node
    static int[] start = new int[100001];
    static int[] end = new int[100001];
   
    // Storing dfs order
    static Vector<Integer> dfs_order = new Vector<Integer>();
    static Vector<Vector<Integer>> adj = new Vector<Vector<Integer>>();
    static boolean[] visited = new boolean[100001];
       
    // Recursive function for dfs traversal dfsUtil()
    static int dfs(int a, int b)
    {
        // keep track of node visited
        visited[a] = true;
        b += 1;
        start[a] = b;
        dfs_order.add(a);
   
        for(int it = 0; it < adj.get(a).size(); it++)
        {
            if(!visited[adj.get(a).get(it)])
                b = dfs(adj.get(a).get(it), b);
        }
   
        endd[a] = b;
        return b;
    }
       
    // Function to print the subtree nodes
    static void Print(int n)
    {
        for(int i = 0; i < n; i++)
        {
            // If node is leaf node
            // start[i] is equals to endd[i]
            if(start[i] != endd[i])
            {
                System.out.print("subtree of node "+ i + " is ");
                for(int j = start[i]+1; j < endd[i]+1; j++)
                {
                    System.out.print(dfs_order.get(j-1) +  " ");
                }
                System.out.println();
            }
        }
    }
     
    public static void main(String[] args) {
        // No of nodes n = 10
        int n =10, c = 0;
          
        for(int i = 0; i < 100001; i++)
        {
            adj.add(new Vector<Integer>());
        }
           
        adj.get(0).add(1);
        adj.get(0).add(2);
        adj.get(0).add(3);
        adj.get(1).add(4);
        adj.get(1).add(5);
        adj.get(4).add(7);
        adj.get(4).add(8);
        adj.get(2).add(6);
        adj.get(6).add(9);
           
        // Calling dfs for node 0
        // Considering root node at 0
        dfs(0, c);
       
        // Print child nodes
        Print(n);
    }
}
 
// This code is contributed by divyeshrabadiya07.

Python3




# Python3 code to print subtree of all nodes
 
# arrays for keeping position at
# each dfs traversal for each node
start = [None] * 100001
end = [None] * 100001
 
# Storing dfs order
dfs_order = []
adj = [[] for i in range(100001)]
visited = [False] * 100001
 
# Recursive function for dfs traversal dfsUtil()
def dfs(a, b):
  
    # keep track of node visited
    visited[a] = 1
    b += 1
    start[a] = b
    dfs_order.append(a)
     
    for it in adj[a]:
        if not visited[it]:
            b = dfs(it, b)
      
    endd[a] = b
    return b
  
# Function to print the subtree nodes
def Print(n):
  
    for i in range(0, n):
      
        # If node is leaf node
        # start[i] is equals to endd[i]
        if start[i] != endd[i]:
          
            print("subtree of node", i, "is", end = " ")
            for j in range(start[i]+1, endd[i]+1):
              
                print(dfs_order[j-1], end = " ")
              
            print()
 
# Driver code
if __name__ == "__main__":
  
    # No of nodes n = 10
    n, c = 10, 0
     
    adj[0].append(1)
    adj[0].append(2)
    adj[0].append(3)
    adj[1].append(4)
    adj[1].append(5)
    adj[4].append(7)
    adj[4].append(8)
    adj[2].append(6)
    adj[6].append(9)
     
    # Calling dfs for node 0
    # Considering root node at 0
    dfs(0, c)
 
    # Print child nodes
    Print(n)
  
# This code is contributed by Rituraj Jain

C#




// C# code to print subtree of all nodes
using System;
using System.Collections.Generic;
class GFG {
     
    // arrays for keeping position
    // at each dfs traversal for each node
    static int[] start = new int[100001];
    static int[] end = new int[100001];
  
    // Storing dfs order
    static List<int> dfs_order = new List<int>();
    static List<List<int>> adj = new List<List<int>>();
    static bool[] visited = new bool[100001];
      
    // Recursive function for dfs traversal dfsUtil()
    static int dfs(int a, int b)
    {
        // keep track of node visited
        visited[a] = true;
        b += 1;
        start[a] = b;
        dfs_order.Add(a);
  
        for(int it = 0; it < adj[a].Count; it++)
        {
            if(!visited[adj[a][it]])
                b = dfs(adj[a][it], b);
        }
  
        endd[a] = b;
        return b;
    }
      
    // Function to print the subtree nodes
    static void Print(int n)
    {
        for(int i = 0; i < n; i++)
        {
            // If node is leaf node
            // start[i] is equals to endd[i]
            if(start[i] != endd[i])
            {
                Console.Write("subtree of node "+ i + " is ");
                for(int j = start[i]+1; j < endd[i]+1; j++)
                {
                    Console.Write(dfs_order[j-1] +  " ");
                }
                Console.WriteLine();
            }
        }
    }
     
  static void Main() {
    // No of nodes n = 10
    int n =10, c = 0;
     
    for(int i = 0; i < 100001; i++)
    {
        adj.Add(new List<int>());
    }
      
    adj[0].Add(1);
    adj[0].Add(2);
    adj[0].Add(3);
    adj[1].Add(4);
    adj[1].Add(5);
    adj[4].Add(7);
    adj[4].Add(8);
    adj[2].Add(6);
    adj[6].Add(9);
      
    // Calling dfs for node 0
    // Considering root node at 0
    dfs(0, c);
  
    // Print child nodes
    Print(n);
  }
}
 
// This code is contributed by divyesh072019.

Javascript




<script>
    // Javascript code to print subtree of all nodes
     
    // arrays for keeping position
    // at each dfs traversal for each node
    let start = new Array(100001);
    let end = new Array(100001);
 
    // Storing dfs order
    let dfs_order = [];
    let adj = [];
    for(let i = 0; i < 100001; i++)
    {
        adj.push([]);
    }
    let visited = new Array(100001);
    visited.fill(false);
     
    // Recursive function for dfs traversal dfsUtil()
    function dfs(a, b)
    {
        // keep track of node visited
        visited[a] = true;
        b += 1;
        start[a] = b;
        dfs_order.push(a);
 
        for(let it = 0; it < adj[a].length; it++)
        {
            if(!visited[adj[a][it]])
                b = dfs(adj[a][it], b);
        }
 
        endd[a] = b;
        return b;
    }
     
    // Function to print the subtree nodes
    function Print(n)
    {
        for(let i = 0; i < n; i++)
        {
            // If node is leaf node
            // start[i] is equals to endd[i]
            if(start[i] != endd[i])
            {
                document.write("subtree of node "+ i + " is ");
                for(let j = start[i]+1; j < endd[i]+1; j++)
                {
                    document.write(dfs_order[j-1] +  " ");
                }
                document.write("</br>");
            }
        }
    }
     
    // No of nodes n = 10
    let n = 10, c = 0;
      
    adj[0].push(1);
    adj[0].push(2);
    adj[0].push(3);
    adj[1].push(4);
    adj[1].push(5);
    adj[4].push(7);
    adj[4].push(8);
    adj[2].push(6);
    adj[6].push(9);
      
    // Calling dfs for node 0
    // Considering root node at 0
    dfs(0, c);
  
    // Print child nodes
    Print(n);
 
// This code is contributed by suresh07.
</script>
Output: 
subtree of node 0 is 1 4 7 8 5 2 6 9 3 
subtree of node 1 is 4 7 8 5 
subtree of node 2 is 6 9 
subtree of node 4 is 7 8 
subtree of node 6 is 9

 

Time Complexity: O(N ^ 2)
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!