# A Space Optimized Solution of LCS

Given two strings, find the length of longest subsequence present in both of them.

Examples:
LCS for input Sequences “ABCDGH” and “AEDFHR” is “ADH” of length 3.
LCS for input Sequences “AGGTAB” and “GXTXAYB” is “GTAB” of length 4.

We have discussed typical dynamic programming based solution for LCS. We can optimize space used by lcs problem. We know recurrence relation of LCS problem is

 `/* Returns length of LCS for X[0..m-1], Y[0..n-1] */` `int` `lcs(string &X, string &Y) ` `{ ` `    ``int` `m = X.length(), n = Y.length(); ` `    ``int` `L[m+1][n+1]; ` ` `  `    ``/* Following steps build L[m+1][n+1] in bottom up ` `       ``fashion. Note that L[i][j] contains length of ` `       ``LCS of X[0..i-1] and Y[0..j-1] */` `    ``for` `(``int` `i=0; i<=m; i++) ` `    ``{ ` `        ``for` `(``int` `j=0; j<=n; j++) ` `        ``{ ` `            ``if` `(i == 0 || j == 0) ` `                ``L[i][j] = 0; ` ` `  `            ``else` `if` `(X[i-1] == Y[j-1]) ` `                ``L[i][j] = L[i-1][j-1] + 1; ` ` `  `            ``else` `                ``L[i][j] = max(L[i-1][j], L[i][j-1]); ` `        ``} ` `    ``} ` ` `  `    ``/* L[m][n] contains length of LCS for X[0..n-1] and ` `       ``Y[0..m-1] */` `    ``return` `L[m][n]; ` `}`

How to find length of LCS in O(n) auxiliary space?

We strongly recommend that you click here and practice it, before moving on to the solution.

One important observation in above simple implementation is, in each iteration of outer loop we only, need values from all columns of previous row. So there is no need of storing all rows in our DP matrix, we can just store two rows at a time and use them, in that way used space will reduce from L[m+1][n+1] to L[n+1]. Below is the implementation of above idea.

## C++

 `// Space optimized C++ implementation ` `// of LCS problem  ` `#include ` `using` `namespace` `std; ` ` `  `// Returns length of LCS  ` `// for X[0..m-1], Y[0..n-1]  ` `int` `lcs(string &X, string &Y) ` `{ ` `     `  `    ``// Find lengths of two strings ` `    ``int` `m = X.length(), n = Y.length(); ` ` `  `    ``int` `L[n + 1]; ` ` `  `    ``// Binary index, used to ` `    ``// index current row and ` `    ``// previous row. ` `    ``bool` `bi; ` ` `  `    ``for` `(``int` `i = 0; i <= m; i++) ` `    ``{ ` `         `  `        ``// Compute current  ` `        ``// binary index ` `        ``bi = i & 1; ` ` `  `        ``for` `(``int` `j = 0; j <= n; j++) ` `        ``{ ` `            ``if` `(i == 0 || j == 0) ` `                ``L[bi][j] = 0; ` ` `  `            ``else` `if` `(X[i-1] == Y[j-1]) ` `                 ``L[bi][j] = L[1 - bi][j - 1] + 1; ` ` `  `            ``else` `                ``L[bi][j] = max(L[1 - bi][j],  ` `                               ``L[bi][j - 1]); ` `        ``} ` `    ``} ` ` `  `    ``// Last filled entry contains ` `    ``// length of LCS ` `    ``// for X[0..n-1] and Y[0..m-1]  ` `    ``return` `L[bi][n]; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``string X = ``"AGGTAB"``; ` `    ``string Y = ``"GXTXAYB"``; ` ` `  `    ``printf``(``"Length of LCS is %d\n"``, lcs(X, Y)); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java Code for A Space Optimized  ` `// Solution of LCS ` ` `  `class` `GFG { ` `     `  `    ``// Returns length of LCS  ` `    ``// for X[0..m - 1], ` `    ``// Y[0..n - 1]  ` `    ``public` `static` `int` `lcs(String X,  ` `                          ``String Y) ` `    ``{ ` `         `  `        ``// Find lengths of two strings ` `        ``int` `m = X.length(), n = Y.length(); ` `     `  `        ``int` `L[][] = ``new` `int``[``2``][n+``1``]; ` `     `  `        ``// Binary index, used to index  ` `        ``// current row and previous row. ` `        ``int` `bi=``0``; ` `     `  `        ``for` `(``int` `i = ``0``; i <= m; i++) ` `        ``{ ` `             `  `            ``// Compute current binary index ` `            ``bi = i & ``1``; ` `     `  `            ``for` `(``int` `j = ``0``; j <= n; j++) ` `            ``{ ` `                ``if` `(i == ``0` `|| j == ``0``) ` `                    ``L[bi][j] = ``0``; ` `     `  `                ``else` `if` `(X.charAt(i - ``1``) ==  ` `                         ``Y.charAt(j - ``1``)) ` `                    ``L[bi][j] = L[``1` `- bi][j - ``1``] + ``1``; ` `     `  `                ``else` `                    ``L[bi][j] = Math.max(L[``1` `- bi][j],  ` `                                        ``L[bi][j - ``1``]); ` `            ``} ` `        ``} ` `     `  `        ``// Last filled entry contains length of  ` `        ``// LCS for X[0..n-1] and Y[0..m-1]  ` `        ``return` `L[bi][n]; ` `    ``} ` `     `  `     `  `    ``// Driver Code  ` `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `        ``String X = ``"AGGTAB"``; ` `        ``String Y = ``"GXTXAYB"``; ` `     `  `        ``System.out.println(``"Length of LCS is "` `+ ` `                                    ``lcs(X, Y)); ` `    ``} ` `} ` ` `  `// This code is contributed by Arnav Kr. Mandal. `

## Python3

 `# Space optimized Python ` `# implementation of LCS problem ` ` `  `# Returns length of LCS for  ` `# X[0..m-1], Y[0..n-1] ` `def` `lcs(X, Y): ` `     `  `    ``# Find lengths of two strings ` `    ``m ``=` `len``(X) ` `    ``n ``=` `len``(Y) ` ` `  `    ``L ``=` `[[``0` `for` `i ``in` `range``(n``+``1``)] ``for` `j ``in` `range``(``2``)] ` ` `  `    ``# Binary index, used to index current row and ` `    ``# previous row. ` `    ``bi ``=` `bool` `     `  `    ``for` `i ``in` `range``(m): ` `        ``# Compute current binary index ` `        ``bi ``=` `i&``1` ` `  `        ``for` `j ``in` `range``(n``+``1``): ` `            ``if` `(i ``=``=` `0` `or` `j ``=``=` `0``): ` `                ``L[bi][j] ``=` `0` ` `  `            ``elif` `(X[i] ``=``=` `Y[j ``-` `1``]): ` `                ``L[bi][j] ``=` `L[``1` `-` `bi][j ``-` `1``] ``+` `1` ` `  `            ``else``: ` `                ``L[bi][j] ``=` `max``(L[``1` `-` `bi][j],  ` `                               ``L[bi][j ``-` `1``]) ` ` `  `    ``# Last filled entry contains length of LCS ` `    ``# for X[0..n-1] and Y[0..m-1] ` `    ``return` `L[bi][n] ` ` `  `# Driver Code ` `X ``=` `"AGGTAB"` `Y ``=` `"GXTXAYB"` ` `  `print``(``"Length of LCS is"``, lcs(X, Y)) ` ` `  `# This code is contributed by Soumen Ghosh. `

## C#

 `// C# Code for A Space  ` `// Optimized Solution of LCS ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `    ``// Returns length of LCS  ` `    ``// for X[0..m - 1], ` `    ``// Y[0..n - 1]  ` `    ``public` `static` `int` `lcs(``string` `X, ` `                          ``string` `Y) ` `    ``{ ` `         `  `        ``// Find lengths of ` `        ``// two strings ` `        ``int` `m = X.Length, n = Y.Length; ` `     `  `        ``int` `[,]L = ``new` `int``[2, n + 1]; ` `     `  `        ``// Binary index, used to  ` `        ``// index current row and  ` `        ``// previous row. ` `        ``int` `bi = 0; ` `     `  `        ``for` `(``int` `i = 0; i <= m; i++) ` `        ``{ ` `             `  `            ``// Compute current ` `            ``// binary index ` `            ``bi = i & 1; ` `     `  `            ``for` `(``int` `j = 0; j <= n; j++) ` `            ``{ ` `                ``if` `(i == 0 || j == 0) ` `                    ``L[bi, j] = 0; ` `      `  `                ``else` `if` `(X[i - 1] == Y[j - 1]) ` `                    ``L[bi, j] = L[1 - bi,  ` `                                 ``j - 1] + 1; ` `     `  `                ``else` `                    ``L[bi, j] = Math.Max(L[1 - bi, j],  ` `                                        ``L[bi, j - 1]); ` `            ``} ` `        ``} ` `     `  `        ``// Last filled entry contains ` `        ``// length of LCS for X[0..n-1] ` `        ``// and Y[0..m-1]  ` `        ``return` `L[bi, n]; ` `    ``} ` `     `  `    ``// Driver Code  ` `    ``public` `static` `void` `Main()  ` `    ``{ ` `        ``string` `X = ``"AGGTAB"``; ` `        ``string` `Y = ``"GXTXAYB"``; ` `     `  `        ``Console.Write(``"Length of LCS is "` `+ ` `                                ``lcs(X, Y)); ` `    ``} ` `} ` ` `  `// This code is contributed  ` `// by shiv_bhakt. `

## PHP

 ` `

Output:

`Length of LCS is 4`

Time Complexity : O(m*n)
Auxiliary Space : O(n)

My Personal Notes arrow_drop_up

Improved By : Vishal_Khoda, AnkitRai01

Article Tags :
Practice Tags :

10

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.