Shortest job first (SJF) or shortest job next, is a scheduling policy that selects the waiting process with the smallest execution time to execute next. SJN is a non-preemptive algorithm.

- Shortest Job first has the advantage of having a minimum average waiting time among all scheduling algorithms.
- It is a Greedy Algorithm.
- It may cause starvation if shorter processes keep coming. This problem can be solved using the concept of ageing.
- It is practically infeasible as Operating System may not know burst time and therefore may not sort them. While it is not possible to predict execution time, several methods can be used to estimate the execution time for a job, such as a weighted average of previous execution times. SJF can be used in specialized environments where accurate estimates of running time are available.

In the above example, since the arrival time of all the processes is 0, the execution order of the process is the ascending order of the burst time of the processes. The burst time is given by the column duration. Therefore, the execution order of the processes is given by:

P4 -> P1 -> P3 -> P2

One implementation for this algorithm has already been discussed in the article with the help of Naive Approach. In this article, the algorithm is implemented by using the concept of a segment tree.

**Approach:** The following is the approach used for the implementation of the shortest job first:

- As the name suggests, the shortest job first algorithm is an algorithm which executes the process whose burst time is least and has arrived before the current time. Therefore, in order to find the process which needs to be executed, sort all the processes from the given set of processes according to their arrival time. This ensures that the process with the shortest burst time which has arrived first is executed first.
- Instead of finding the minimum burst time process among all the arrived processes by iterating the

whole struct array, the range minimum of the burst time of all the arrived processes upto the current time is calculated using segment tree. - After selecting a process which needs to be executed, the
**completion time**,**turn around time**and**waiting time**is calculated by using arrival time and burst time of the process. The formulae to calculate the respective times are:**Completion Time:**Time at which process completes its execution.Completion Time = Start Time + Burst Time

**Turn Around Time:**Time Difference between completion time and arrival time.Turn Around Time = Completion Time – Arrival Time

**Waiting Time(W.T):**Time Difference between turn around time and burst time.Waiting Time = Turn Around Time – Burst Time

- After calculating, the respective times are updated in the array and the burst time of the executed process is set to infinity in the segment tree base array so that it is not considered as the minimum burst time in the further queries.

Below is the implementation of the shortest job first using the concept of segment tree:

## C++

`// C++ implementation of shortest job first` `// using the concept of segment tree` ` ` `#include <bits/stdc++.h>` `using` `namespace` `std;` `#define ll long long` `#define z 1000000007` `#define sh 100000` `#define pb push_back` `#define pr(x) printf("%d ", x)` ` ` `struct` `util {` ` ` ` ` `// Process ID` ` ` `int` `id;` ` ` `// Arrival time` ` ` `int` `at;` ` ` `// Burst time` ` ` `int` `bt;` ` ` `// Completion time` ` ` `int` `ct;` ` ` `// Turnaround time` ` ` `int` `tat;` ` ` `// Waiting time` ` ` `int` `wt;` `}` ` ` `// Array to store all the process information` `// by implementing the above struct util` `ar[sh + 1];` ` ` `struct` `util1 {` ` ` ` ` `// Process id` ` ` `int` `p_id;` ` ` `// burst time` ` ` `int` `bt1;` `};` ` ` `util1 range;` ` ` `// Segment tree array to` `// process the queries in nlogn` `util1 tr[4 * sh + 5];` ` ` `// To keep an account of where` `// a particular process_id is` `// in the segment tree base array` `int` `mp[sh + 1];` ` ` `// Comparator function to sort the` `// struct array according to arrival time` `bool` `cmp(util a, util b)` `{` ` ` `if` `(a.at == b.at)` ` ` `return` `a.id < b.id;` ` ` `return` `a.at < b.at;` `}` ` ` `// Function to update the burst time and process id` `// in the segment tree` `void` `update(` `int` `node, ` `int` `st, ` `int` `end,` ` ` `int` `ind, ` `int` `id1, ` `int` `b_t)` `{` ` ` `if` `(st == end) {` ` ` `tr[node].p_id = id1;` ` ` `tr[node].bt1 = b_t;` ` ` `return` `;` ` ` `}` ` ` `int` `mid = (st + end) / 2;` ` ` `if` `(ind <= mid)` ` ` `update(2 * node, st, mid, ind, id1, b_t);` ` ` `else` ` ` `update(2 * node + 1, mid + 1, end, ind, id1, b_t);` ` ` `if` `(tr[2 * node].bt1 < tr[2 * node + 1].bt1) {` ` ` `tr[node].bt1 = tr[2 * node].bt1;` ` ` `tr[node].p_id = tr[2 * node].p_id;` ` ` `}` ` ` `else` `{` ` ` `tr[node].bt1 = tr[2 * node + 1].bt1;` ` ` `tr[node].p_id = tr[2 * node + 1].p_id;` ` ` `}` `}` ` ` `// Function to return the range minimum of the burst time` `// of all the arrived processes using segment tree` `util1 query(` `int` `node, ` `int` `st, ` `int` `end, ` `int` `lt, ` `int` `rt)` `{` ` ` `if` `(end < lt || st > rt)` ` ` `return` `range;` ` ` `if` `(st >= lt && end <= rt)` ` ` `return` `tr[node];` ` ` `int` `mid = (st + end) / 2;` ` ` `util1 lm = query(2 * node, st, mid, lt, rt);` ` ` `util1 rm = query(2 * node + 1, mid + 1, end, lt, rt);` ` ` `if` `(lm.bt1 < rm.bt1)` ` ` `return` `lm;` ` ` `return` `rm;` `}` ` ` `// Function to perform non_preemptive` `// shortest job first and return the` `// completion time, turn around time and` `// waiting time for the given processes` `void` `non_premptive_sjf(` `int` `n)` `{` ` ` ` ` `// To store the number of processes` ` ` `// that have been completed` ` ` `int` `counter = n;` ` ` ` ` `// To keep an account of the number` ` ` `// of processes that have been arrived` ` ` `int` `upper_range = 0;` ` ` ` ` `// Current running time` ` ` `int` `tm` `= min(INT_MAX, ar[upper_range + 1].at);` ` ` ` ` `// To find the list of processes whose arrival time` ` ` `// is less than or equal to the current time` ` ` `while` `(counter) {` ` ` `for` `(; upper_range <= n;) {` ` ` `upper_range++;` ` ` `if` `(ar[upper_range].at > ` `tm` `|| upper_range > n) {` ` ` `upper_range--;` ` ` `break` `;` ` ` `}` ` ` ` ` `update(1, 1, n, upper_range,` ` ` `ar[upper_range].id, ar[upper_range].bt);` ` ` `}` ` ` ` ` `// To find the minimum of all the running times` ` ` `// from the set of processes whose arrival time is` ` ` `// less than or equal to the current time` ` ` `util1 res = query(1, 1, n, 1, upper_range);` ` ` ` ` `// Checking if the process has already been executed` ` ` `if` `(res.bt1 != INT_MAX) {` ` ` `counter--;` ` ` `int` `index = mp[res.p_id];` ` ` `tm` `+= (res.bt1);` ` ` ` ` `// Calculating and updating the array with` ` ` `// the current time, turn around time and waiting time` ` ` `ar[index].ct = ` `tm` `;` ` ` `ar[index].tat = ar[index].ct - ar[index].at;` ` ` `ar[index].wt = ar[index].tat - ar[index].bt;` ` ` ` ` `// Update the process burst time with` ` ` `// infinity when the process is executed` ` ` `update(1, 1, n, index, INT_MAX, INT_MAX);` ` ` `}` ` ` `else` `{` ` ` `tm` `= ar[upper_range + 1].at;` ` ` `}` ` ` `}` `}` ` ` `// Function to call the functions and perform` `// shortest job first operation` `void` `execute(` `int` `n)` `{` ` ` ` ` `// Sort the array based on the arrival times` ` ` `sort(ar + 1, ar + n + 1, cmp);` ` ` `for` `(` `int` `i = 1; i <= n; i++)` ` ` `mp[ar[i].id] = i;` ` ` ` ` `// Calling the function to perform` ` ` `// non-premptive-sjf` ` ` `non_premptive_sjf(n);` `}` ` ` `// Function to print the required values after` `// performing shortest job first` `void` `print(` `int` `n)` `{` ` ` ` ` `cout << ` `"ProcessId "` ` ` `<< ` `"Arrival Time "` ` ` `<< ` `"Burst Time "` ` ` `<< ` `"Completion Time "` ` ` `<< ` `"Turn Around Time "` ` ` `<< ` `"Waiting Time\n"` `;` ` ` `for` `(` `int` `i = 1; i <= n; i++) {` ` ` `cout << ar[i].id << ` `" \t\t "` ` ` `<< ar[i].at << ` `" \t\t "` ` ` `<< ar[i].bt << ` `" \t\t "` ` ` `<< ar[i].ct << ` `" \t\t "` ` ` `<< ar[i].tat << ` `" \t\t "` ` ` `<< ar[i].wt << ` `" \n"` `;` ` ` `}` `}` ` ` `// Driver code` `int` `main()` `{` ` ` `// Number of processes` ` ` `int` `n = 5;` ` ` ` ` `// Initializing the process id` ` ` `// and burst time` ` ` `range.p_id = INT_MAX;` ` ` `range.bt1 = INT_MAX;` ` ` ` ` `for` `(` `int` `i = 1; i <= 4 * sh + 1; i++) {` ` ` `tr[i].p_id = INT_MAX;` ` ` `tr[i].bt1 = INT_MAX;` ` ` `}` ` ` ` ` `// Arrival time, Burst time and ID` ` ` `// of the processes on which SJF needs` ` ` `// to be performed` ` ` `ar[1].at = 1;` ` ` `ar[1].bt = 7;` ` ` `ar[1].id = 1;` ` ` ` ` `ar[2].at = 2;` ` ` `ar[2].bt = 5;` ` ` `ar[2].id = 2;` ` ` ` ` `ar[3].at = 3;` ` ` `ar[3].bt = 1;` ` ` `ar[3].id = 3;` ` ` ` ` `ar[4].at = 4;` ` ` `ar[4].bt = 2;` ` ` `ar[4].id = 4;` ` ` ` ` `ar[5].at = 5;` ` ` `ar[5].bt = 8;` ` ` `ar[5].id = 5;` ` ` ` ` `execute(n);` ` ` ` ` `// Print the calculated time` ` ` `print(n);` `}` |

## Java

`// Java implementation of shortest job first ` `// using the concept of segment tree ` `import` `java.util.*;` ` ` `class` `GFG {` ` ` ` ` `static` `int` `z = ` `1000000007` `;` ` ` `static` `int` `sh = ` `100000` `;` ` ` ` ` `static` `class` `util {` ` ` ` ` `// Process ID` ` ` `int` `id;` ` ` `// Arrival time` ` ` `int` `at;` ` ` `// Burst time` ` ` `int` `bt;` ` ` `// Completion time` ` ` `int` `ct;` ` ` `// Turnaround time` ` ` `int` `tat;` ` ` `// Waiting time` ` ` `int` `wt;` ` ` `}` ` ` ` ` `// Array to store all the process information` ` ` `// by implementing the above struct util` ` ` `static` `util[] ar = ` `new` `util[sh + ` `1` `];` ` ` `static` `{` ` ` `for` `(` `int` `i = ` `0` `; i < sh + ` `1` `; i++) {` ` ` `ar[i] = ` `new` `util();` ` ` `}` ` ` `}` ` ` ` ` `static` `class` `util1 {` ` ` ` ` `// Process id` ` ` `int` `p_id;` ` ` `// burst time` ` ` `int` `bt1;` ` ` `};` ` ` ` ` `static` `util1 range = ` `new` `util1();` ` ` ` ` `// Segment tree array to` ` ` `// process the queries in nlogn` ` ` `static` `util1[] tr = ` `new` `util1[` `4` `* sh + ` `5` `];` ` ` `static` `{` ` ` `for` `(` `int` `i = ` `0` `; i < ` `4` `* sh + ` `5` `; i++) {` ` ` `tr[i] = ` `new` `util1();` ` ` `}` ` ` `}` ` ` ` ` `// To keep an account of where` ` ` `// a particular process_id is` ` ` `// in the segment tree base array` ` ` `static` `int` `[] mp = ` `new` `int` `[sh + ` `1` `];` ` ` ` ` `// Comparator function to sort the` ` ` `// struct array according to arrival time` ` ` ` ` `// Function to update the burst time and process id` ` ` `// in the segment tree` ` ` `static` `void` `update(` `int` `node, ` `int` `st, ` `int` `end, ` ` ` `int` `ind, ` `int` `id1, ` `int` `b_t)` ` ` `{` ` ` `if` `(st == end) {` ` ` `tr[node].p_id = id1;` ` ` `tr[node].bt1 = b_t;` ` ` `return` `;` ` ` `}` ` ` `int` `mid = (st + end) / ` `2` `;` ` ` `if` `(ind <= mid)` ` ` `update(` `2` `* node, st, mid, ind, id1, b_t);` ` ` `else` ` ` `update(` `2` `* node + ` `1` `, mid + ` `1` `, end, ind, id1, b_t);` ` ` `if` `(tr[` `2` `* node].bt1 < tr[` `2` `* node + ` `1` `].bt1) {` ` ` `tr[node].bt1 = tr[` `2` `* node].bt1;` ` ` `tr[node].p_id = tr[` `2` `* node].p_id;` ` ` `} ` `else` `{` ` ` `tr[node].bt1 = tr[` `2` `* node + ` `1` `].bt1;` ` ` `tr[node].p_id = tr[` `2` `* node + ` `1` `].p_id;` ` ` `}` ` ` `}` ` ` ` ` `// Function to return the range minimum of the burst time` ` ` `// of all the arrived processes using segment tree` ` ` `static` `util1 query(` `int` `node, ` `int` `st, ` `int` `end,` ` ` `int` `lt, ` `int` `rt) ` ` ` `{` ` ` `if` `(end < lt || st > rt)` ` ` `return` `range;` ` ` `if` `(st >= lt && end <= rt)` ` ` `return` `tr[node];` ` ` `int` `mid = (st + end) / ` `2` `;` ` ` `util1 lm = query(` `2` `* node, st, mid, lt, rt);` ` ` `util1 rm = query(` `2` `* node + ` `1` `, mid + ` `1` `, end, lt, rt);` ` ` `if` `(lm.bt1 < rm.bt1)` ` ` `return` `lm;` ` ` `return` `rm;` ` ` `}` ` ` ` ` `// Function to perform non_preemptive` ` ` `// shortest job first and return the` ` ` `// completion time, turn around time and` ` ` `// waiting time for the given processes` ` ` `static` `void` `non_premptive_sjf(` `int` `n) {` ` ` ` ` `// To store the number of processes` ` ` `// that have been completed` ` ` `int` `counter = n;` ` ` ` ` `// To keep an account of the number` ` ` `// of processes that have been arrived` ` ` `int` `upper_range = ` `0` `;` ` ` ` ` `// Current running time` ` ` `int` `tm = Math.min(Integer.MAX_VALUE, ar[upper_range + ` `1` `].at);` ` ` ` ` `// To find the list of processes whose arrival time` ` ` `// is less than or equal to the current time` ` ` `while` `(counter != ` `0` `) {` ` ` `for` `(; upper_range <= n;) {` ` ` `upper_range++;` ` ` `if` `(ar[upper_range].at > tm || upper_range > n) {` ` ` `upper_range--;` ` ` `break` `;` ` ` `}` ` ` ` ` `update(` `1` `, ` `1` `, n, upper_range, ar[upper_range].id, ` ` ` `ar[upper_range].bt);` ` ` `}` ` ` ` ` `// To find the minimum of all the running times` ` ` `// from the set of processes whose arrival time is` ` ` `// less than or equal to the current time` ` ` `util1 res = query(` `1` `, ` `1` `, n, ` `1` `, upper_range);` ` ` ` ` `// Checking if the process has already been executed` ` ` `if` `(res.bt1 != Integer.MAX_VALUE) {` ` ` `counter--;` ` ` `int` `index = mp[res.p_id];` ` ` `tm += (res.bt1);` ` ` ` ` `// Calculating and updating the array with` ` ` `// the current time, turn around time and waiting time` ` ` `ar[index].ct = tm;` ` ` `ar[index].tat = ar[index].ct - ar[index].at;` ` ` `ar[index].wt = ar[index].tat - ar[index].bt;` ` ` ` ` `// Update the process burst time with` ` ` `// infinity when the process is executed` ` ` `update(` `1` `, ` `1` `, n, index, Integer.MAX_VALUE, Integer.MAX_VALUE);` ` ` `} ` `else` `{` ` ` `tm = ar[upper_range + ` `1` `].at;` ` ` `}` ` ` `}` ` ` `}` ` ` ` ` `// Function to call the functions and perform` ` ` `// shortest job first operation` ` ` `static` `void` `execute(` `int` `n) {` ` ` ` ` `// Sort the array based on the arrival times` ` ` `Arrays.sort(ar, ` `1` `, n, ` `new` `Comparator<util>() {` ` ` `public` `int` `compare(util a, util b) {` ` ` `if` `(a.at == b.at)` ` ` `return` `a.id - b.id;` ` ` `return` `a.at - b.at;` ` ` `}` ` ` `});` ` ` `for` `(` `int` `i = ` `1` `; i <= n; i++)` ` ` `mp[ar[i].id] = i;` ` ` ` ` `// Calling the function to perform` ` ` `// non-premptive-sjf` ` ` `non_premptive_sjf(n);` ` ` `}` ` ` ` ` `// Function to print the required values after` ` ` `// performing shortest job first` ` ` `static` `void` `print(` `int` `n) {` ` ` ` ` `System.out.println(` `"ProcessId Arrival Time Burst Time"` `+` ` ` `" Completion Time Turn Around Time Waiting Time"` `);` ` ` `for` `(` `int` `i = ` `1` `; i <= n; i++) {` ` ` `System.out.printf(` `"%d\t\t%d\t\t%d\t\t%d\t\t%d\t\t%d\n"` `, ` ` ` `ar[i].id, ar[i].at, ar[i].bt, ar[i].ct, ar[i].tat,` ` ` `ar[i].wt);` ` ` `}` ` ` `}` ` ` ` ` `// Driver Code` ` ` `public` `static` `void` `main(String[] args) ` ` ` `{` ` ` `// Number of processes` ` ` `int` `n = ` `5` `;` ` ` ` ` `// Initializing the process id` ` ` `// and burst time` ` ` `range.p_id = Integer.MAX_VALUE;` ` ` `range.bt1 = Integer.MAX_VALUE;` ` ` ` ` `for` `(` `int` `i = ` `1` `; i <= ` `4` `* sh + ` `1` `; i++)` ` ` `{` ` ` `tr[i].p_id = Integer.MAX_VALUE;` ` ` `tr[i].bt1 = Integer.MAX_VALUE;` ` ` `}` ` ` ` ` `// Arrival time, Burst time and ID` ` ` `// of the processes on which SJF needs` ` ` `// to be performed` ` ` `ar[` `1` `].at = ` `1` `;` ` ` `ar[` `1` `].bt = ` `7` `;` ` ` `ar[` `1` `].id = ` `1` `;` ` ` ` ` `ar[` `2` `].at = ` `2` `;` ` ` `ar[` `2` `].bt = ` `5` `;` ` ` `ar[` `2` `].id = ` `2` `;` ` ` ` ` `ar[` `3` `].at = ` `3` `;` ` ` `ar[` `3` `].bt = ` `1` `;` ` ` `ar[` `3` `].id = ` `3` `;` ` ` ` ` `ar[` `4` `].at = ` `4` `;` ` ` `ar[` `4` `].bt = ` `2` `;` ` ` `ar[` `4` `].id = ` `4` `;` ` ` ` ` `ar[` `5` `].at = ` `5` `;` ` ` `ar[` `5` `].bt = ` `8` `;` ` ` `ar[` `5` `].id = ` `5` `;` ` ` ` ` `execute(n);` ` ` ` ` `// Print the calculated time` ` ` `print(n);` ` ` `}` `}` ` ` `// This code is contributed by` `// sanjeev2552` |

**Output:**

ProcessId Arrival Time Burst Time Completion Time Turn Around Time Waiting Time 1 1 7 8 7 0 2 2 5 16 14 9 3 3 1 9 6 5 4 4 2 11 7 5 5 5 8 24 19 11

**Time Complexity:** In order to analyze the running time of the above algorithm, the following running times needs to be understood first:

- The time complexity to construct a segment tree for N processes is
**O(N)**. - The time complexity to update a node in a segment tree is given by
**O(log(N))**. - The time complexity to perform a range minimum query in a segment tree is given by
**O(log(N))**. - Since the update operation and queries are performed for given N processes, the total time complexity of the algorithm is
**O(N*log(N))**where N is the number of processes. - This algorithm performs better than the approach mentioned in this article because it takes
**O(N**for execution.^{2})

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**